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a b s t r a c t

This study investigates asymptotic properties of sample quantile estimates in the context of long-memory
stochastic volatility models in which the latent volatility component is an exponential transformation of
a linear long-memory time series. We focus on the least absolute deviation quantile estimator and show
thatwhile the underlying process is a sequence of stationarymartingale differences, the estimation errors
are asymptotically normal with the convergence rate which is slower than

√
n and determined by the

dependence parameter of the volatility sequence. A non-parametric resampling method is employed to
estimate the normalizing constants by which the confidence intervals are constructed. To demonstrate
the methodology, we conduct a simulation study as well as an empirical analysis of the Value-at-Risk
estimate of the S&P 500 daily returns. Both are consistent with the theoretical findings and provide clear
evidence that the coverage probabilities of confidence intervals for the quantile estimate are severely
biased if the strong dependence of the unobserved volatility sequence is ignored.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Despite extensive studies of sample quantiles for stationary
sequences, corresponding work pertaining to an important class
of nonlinear time series remains largely absent. This paper aims
to fill that gap by deriving the asymptotic distribution of quantile
estimates for the long-memory stochastic volatility (LMSV)model.
The development of this class of time series can be traced to two
well-established stylized facts about speculative returns, namely,
volatility clustering and Taylor’s effect. The former concerns the
phenomenon of a return series that large changes tend to be
followed by large changes – of either signs – and small changes
tend to be followed by small changes (Mandelbrot, 1963; Fama,
1965). The latter reports a positive and persistent autocorrelation
in some nonlinear transformations of the returns, such as the
square, the logarithm of square, and the absolute value, whereas
the return series itself behaves like awhite noise and contains very
little correlation (e.g. Taylor, 1986; Ding et al., 1993). Stationary
models proposed to describe these two properties include the
ARCH (or GARCH) family (e.g. Engle, 1982; Bollerslev, 1986) and
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the stochastic volatility (SV)model (e.g. Taylor, 1986; Harvey et al.,
1994). In all of these models the component that governs the
volatility of the underlying return sequence is restricted to the case
inwhich its autocorrelation function decays exponentially or,more
generally, is summable, falling into the class of stationary time
series usually described as short-memory. Lobato and Savin (1998)
examine the absolute value and the square of the daily S&P 500
returns and show that the autocorrelations of the two transformed
series decay hyperbolically at a rate of less than 1 and are thus
not summable. Time serieswith such autocorrelation functions are
called long-memory or long-range dependent. Following Lobato
and Savin (1998), Breidt et al. (1998) extends the SV model to the
LMSV model, which allows the latent volatility component to be
long-memory, and show that the LMSVmodel better fits the decay
rate of the autocorrelations of returns volatility than do some other
commonly used models.

The LMSV model specified by Breidt et al. (1998) is as follows:

Yt = µ+ et , et = σtut and σt = σ̄ eZt/2, (1)

where σ̄ > 0,µ is the mean of Yt , {ut} is i.i.d. with zero mean, unit
variance, and independent of the latent volatility component {Zt}.
Furthermore, {Zt} is a linear process defined as

Zt =

∞
i=1

aiεt−i, ai ∼ c∗
· i−β , (2)
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where the i.i.d. innovations {εi} have zeromean and finite variance
σ 2
ε , c

∗ is some positive constant, β ∈ (1/2, 1), and gn ∼ hn signi-
fying limn→∞ gn/hn = 1. The term ‘‘long-memory’’ refers to the
property of


i |ai| = ∞ or the fact that the autocovariance func-

tion γ (j) of {Zt} is not summable because γ (j) ∼ c∗2j−(2β−1). Note
that we do not assume the Gaussianity of εi. One popular model of
the long-memory linear process in Eq. (2) is the fractional autore-
gressive integrated moving average (ARFIMA) process of Adenst-
edt (1974), Granger and Joyeux (1980) and Hosking (1981). The
traditional SV model, i.e. the short-memory version of Eq. (1),
requires that the coefficient sequence {ai}be summable. Somegen-
eral properties of thismodel can be found in Taylor (1986) andHar-
vey et al. (1994). In the sequel we denote by Fe(·), Fu(·), FY (·), and
FZ (·) the distribution functions of et , ut , Yt , and Zt , respectively.

The long-memory process {Zt} is sometimes referred to as an
I(d) process with thememory parameter d = 1−β (e.g. Brockwell
and Davis, 1991). The LMSV model described in Eqs. (1) and (2)
exhibits the desired property that {Yt} is white noise and {Y 2

t } is
long-memory. Because of this characteristic property, one needs
to be careful in making statistical inference for the LMSV model if
the statistics of interest involve nonlinear transformations of the
underlying sequence. Take the estimation of the returns’ Sharpe
ratio for example, the square transformation is applied to the
returns in order to estimate the standard deviation. As a result,
while the returns form a martingale difference sequence, the
persistent correlation of the volatility component emerges along
with the estimation of Sharpe ratio, causing the standard root-n
central limit theorem to fail (Ho, 2006). The similar non-standard
asymptotics also occurs in the case of quantile estimateswhere the
transformation involves the indicator function. There have been
extensive studies on the asymptotic properties of sample quantiles
for the sequence of short-memory random variables. The limiting
distribution for the estimate ξ̂0(τ ) of the τ th quantile ξ0(τ ), which
is usually derived with the help of the Bahadur representation
(Bahadur, 1966), is
√
n

ξ̂0(τ )− ξ0(τ )


d

→N

0, σ 2(τ )


F ′

Y (ξ0(τ ))
−2

, (3)

where the limiting variance σ 2(τ ) is τ(1 − τ) for an iid sequence,
and σ 2 (τ ) = τ(1 − τ) + 2


∞

k=1 γI (k) with γI (k) = cov(I(Y1 <
ξ0(τ )), I(Y1+k < ξ0(τ ))) if a certain type of weak dependence is
imposed (Sen, 1972; Yoshihara, 1995). Wu (2005) establishes the
Bahadur representation for linear processes which are allowed to
be of short or long memory characterized by their summability
conditions on the innovation coefficients. Because the similar
representation is yet to be developed for the LMSV process,
we employ a different method to study the issue of quantile
estimation.

In the present paper the quantile estimator we choose is based
on the absolute deviation loss and defined as the solution to the
following minimization problem (see, Koenker and Bassett, 1978;
Koenker, 2005):

ξ̂0(τ ) = argmin
θ∈R


τ


Yt−θ≥0

|Yt − θ | + (1 − τ)


Yt−θ<0

|Yt − θ |



= argmin
θ∈R


n

t=1

ρτ (Yt − θ)


, (4)

where ξ0(τ ) is the τ th quantile of FY , ρτ (x) (usually called
the check function) is given by x (τ − I (x < 0)), I (x < 0) is the
indicator function of {x < 0} and n denotes the sample size. As
proposed in Theorem 2, the quantile estimates derived in Eq. (4)
for the LMSV model obey the following non-root-n central limit
theorem:

n1−H

ξ̂0(τ )− ξ0(τ )


d

→N

0,
(ξ0(τ )− µ)2σ ∗2

4


, (5)

with H = 3/2 − β = 1/2 + d1 and σ ∗2 being the limiting
variance of

n
i=1 Zt/n

H . The rate n1−H given in Eq. (5) reveals
that the statistical inferences made for ξ0 (τ ) using the estimate
ξ̂0 (τ )would be greatly biased if the persistence inmemory carried
in the latent volatility component is not taken into account. For
example, the width of the confidence interval constructed by
using Eq. (5) for ξ0 (τ ) becomes much greater than Eq. (3). This
result has an important practical implication for the estimation
of Value-at-Risk (VaR), a quantity commonly used in financial
economics as a quantitative measure of investment risk. The VaR
is defined as the maximal loss of an asset or portfolio with a
given probability over a fixed period of time, or equivalently,
VaR is a quantile of the loss distribution of the underlying asset
or portfolio with a fixed time frame. Although Taylor’s effect is
widely recognized among researchers and practitioners, previous
works (e.g. Dowd, 2001; Chen and Tang, 2005) on sample quantiles
of returns seldom consider the models taking into account the
fact that the autocorrelations of the returns’ volatility decay very
slowly. In light of the success of the LMSV time series in modeling
financial returns, the result of Eq. (5) should offer a more reliable
assessment for the variation of VaR estimates.

To use Eq. (5) to construct confidence intervals for quantile esti-
mates, the usually unknownmemory parameterH and the limiting
varianceσ ∗2 pose a challenging problemsince they bothdependon
the unobservable sequence {Zt}. We employ the sampling window
method (see, for example, Hall et al., 1998; Zhang et al., 2013) to
estimate the normalizing constants n1−H

· σ ∗2 by focusing on the
log-square {log Y 2

t } of the observations.
The basic model (BM) defined in (1) is characterized by the

exponential transformation and the independence between the
volatility, {σt}, and the shock to the logarithms of prices, {ut}.
Among many other SV models considered in the literature, we
briefly compare three of themwith the BM; amore comprehensive
and detailed accounts of the development of the SV model can
be found in Taylor (1994) and Shephard (1996). The first model
is the hidden Markov model (HMM) in which the volatility σt
is a Markov chain with finite number of states. It is an intuitive
model to describe the stylized fact of volatility clustering, but less
successful in describing returns than models having continuous
distribution for volatility. A review of the model and some
theoretical results are provided in Hamilton (1994, Chapter 22).
Second, the asymmetric SV model (ASVM) that allows some
dependence between {σt} and {ut} while maintaining that the
returns {Yt} still form a martingale difference sequence. This can
be achieved, for example, by supposing that ut is independent
of {σt , σt−1, σt−2, . . . , ut−1, ut−2, . . .} (Taylor, 2005, Chapter 11).
The ASVM is motivated by the property of asymmetric volatility
(or the leverage effect) held by many speculative returns that
the volatility of positive returns is in average less than that of
negative returns. The similar effect of asymmetric volatility can
also be generated by the EGARCH model introduced in Nelson
(1991). Third, Robinson (2001) considers a different nonlinear
model (referred as NM later) using more general functions instead
of the exponential transformation. Specifically, the excess return
in (1) is et = f1(ζ1t)f2(ζ2t), where, for the univariate case, f1 and f2
are both square-integrablewith respect to the normal distribution,
and {(ζ1t , ζ2t)} is a sequence of bivariate normal random vectors.
The normality assumption is the major constraint to the NM. The
BM we focus on has some advantages over the aforementioned
three types of SV models. It is simple and able to model important
stylized facts about returns. Extending the BM to the long-memory
case as shown in (2) is straightforward, but it is unclear as how

1 Hereafter, both H and d appear interchangeably to denote the memory
parameter.
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