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a b s t r a c t

Frequently econometricians are interested in verifying a relationship between two or more time series.
Such analysis is typically carried out by causality and/or independence testswhich have beenwell studied
when the data is univariate or multivariate. Modern data though is increasingly of a high dimensional
or functional nature for which finite dimensional methods are not suitable. In the present paper we
develop methodology to check the assumption that data obtained from two functional time series
are independent. Our procedure is based on the norms of empirical cross covariance operators and
is asymptotically validated when the underlying populations are assumed to be in a class of weakly
dependent random functions which include the functional ARMA, ARCH and GARCH processes.
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1. Introduction and results

A common goal of data analysis in econometrics is to determine
whether or not a relationship exists between two variables which
aremeasured over time. A determination in eitherwaymay be use-
ful. On one hand, if a relationship is confirmed to exist between two
variables then further investigation into the strength and nature of
the relationship may lead to interesting insights or effective pre-
dictive models. Conversely if there is no relationship between the
two variables then an entire toolbox of statistical techniques de-
veloped to analyze two samples that are independentmay be used.
The problem of testing for correlation between two univariate or
multivariate time series has been well treated, and we discuss the
relevant literature below. However, as a by product of seemingly
insatiable modern data storage technology, many data of inter-
est exhibit such large dimension that traditionalmultivariate tech-
niques are not suitable. For example, tick by tick stock return data
is stored hundreds of times per second, leading to thousands of ob-
servations during a single day. In such cases a pragmatic approach
is to treat the data as densely observed measurements from an
underlying curve, and, after using the measurements to approx-
imate the curve, apply statistical techniques to the curves them-
selves. This approach is fundamental in functional data analysis,
and in recent years much effort has been put forth to adapt cur-
rently available procedures in multivariate analysis to functional
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data. The goal of the present paper is to develop a test for indepen-
dence between two functional time series.

In the context of checking for independence between two
second order stationary univariate time series, Haugh (1976) pro-
posed a testing procedure based on sample cross-correlation esti-
mators. His test may be considered as an adaptation of the popular
Box–Ljung–Pierce portmanteau test (cf. Ljung and Box (1978)) to
two samples. In a similar progression the multivariate portman-
teau test of Li and McLeod (1981) was extended to test for correla-
tion between two multivariate ARMA time series by El Himdi and
Roy (1997) whose test statistic was based on cross-correlationma-
trices. The literature on such tests has also grown over the years
to include adaptations for robustness as well as several other con-
siderations, see Koch and Yang (1986), Li and Hui (1994) and El
Himdi et al. (2003) for details. Many of these results are summa-
rized in Li (2004). A separate approach for multivariate data based
on the distance correlation measure is developed in Székely and
Rizzo (2013).

The analysis of functional time series has seen increased atten-
tion in statistics, economics and in other applications over the last
decade, see Horváth and Kokoszka (2012) for a summary of recent
advances. To test for independence within a single functional time
series, Gabrys and Kokoszka (2007) proposed a method where the
functional observations are projected onto finitely many basis ele-
ments, and a multivariate portmanteau test is applied to the vec-
tors of scores which define the projections. Horváth et al. (2013)
developed a portmanteau test for functional data in which the in-
ference is performed using the operator norm of the empirical co-
variance operators at lags h, 1 ≤ h ≤ H , which could be considered
as a direct functional analog of the Box–Ljung–Pierce test. Due to
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the infinite dimension of functional data, a normal limit is estab-
lished for the test statistic rather than the classical χ2 limit with
degrees of freedom depending on the data dimension.

The method that we propose for testing noncorrelation be-
tween two functional time series follows the example of Horváth
et al. (2013). Suppose that we have observed X1(t), . . . , Xn(t)
and Y1(s), . . . , Yn(s)which are samples from jointly stationary se-
quences of square integrable random functions on [0, 1]. Formally
we are interested in testing

H0 : the sequences {Xi}
∞

i=1 and {Yj}
∞

j=1 are independent

against the alternative

HA : for some integer h0, −∞ < h0 < ∞,


C2
h0(t, s)dtds > 0

where Ch0(t, s) = Cov(X0(t), Yh0(s)).

We use the notation

to mean

 1
0 . Assuming jointly Gaussian dis-

tributions for the underlying observations, independence reduces
to zero cross-correlations at all lags, and hence HA is equivalent to
the complement of H0 in that case. To derive the test statistic, we
note that under H0, the sample cross-covariance functions

Ĉn,h(t, s) =


1
n

n−h
i=1

(Xi(t)− X̄(t))(Yi+h(s)− Ȳ (s)) h ≥ 0

1
n

n
i=1−h

(Xi(t)− X̄(t))(Yi+h(s)− Ȳ (s)) h < 0

should be close to the zero function for all choices of h, where

X̄(t) =
1
n

n
i=1

Xi(t), and Ȳ (s) =
1
n

n
i=1

Yi(s).

Under HA a cross covariance function is different from the zero
function for at least one h. The test statistic is then based on

T̂n,H =

H
h=−H


Ĉ2
n,h(t, s)dtds

with the hope that it includes the covariance estimator corre-
sponding to a non zero function if it exists. We then reject H0 for
large values of T̂n,H . Our main result is the asymptotic distribution
of T̂n,H under H0.

In order to cover a large class of functional time series processes,
we assume that X = {Xi}

∞

i=−∞
and Y = {Yi}

∞

i=−∞
are approximable

Bernoulli shifts. We say that η = {ηj(t)}∞j=−∞
is an L4 absolutely

approximable Bernoulli shift in {ϵj(t),−∞ < j < ∞} if

ηi = g(ϵi, ϵi−1, . . .) for some nonrandommeasurable function
g : S∞

→ L2 and i.i.d. random innovations ϵj,−∞ < j < ∞,

with values in a measurable space S, (1.1)
ηj(t) = ηj(t, ω) is jointly measurable in

(t, ω) (−∞ < j < ∞), (1.2)

and

the sequence {η} can be approximated by ℓ-dependent
sequences {ηj,ℓ}

∞

j=−∞
in the sense that

∞
ℓ=1

ℓ(E∥ηj − ηj,ℓ∥
4)1/4 < ∞

where ηj,ℓ is defined by ηj,ℓ = g(ϵj, ϵj−1, . . . , ϵj−ℓ+1, ϵ
∗

j,ℓ),

ϵ∗

j,ℓ = (ϵ∗

j,ℓ,j−ℓ, ϵ
∗

j,ℓ,j−ℓ−1, . . .), where the ϵ∗

j,ℓ,k
′s are independent

copies of ϵ0, independent of {ϵj,−∞ < j < ∞}. (1.3)

In assumption (1.1) we take S to be an arbitrary measurable space,
however in most applications S is itself a function space and
the evaluation of g(ϵi, ϵi−1, . . .) is a functional of {ϵj(t)}ij=−∞

. In
this case assumption (1.2) follows from the joint measurability of
the ϵi(t, ω)’s. Assumption (1.3) is stronger than the requirement

∞

ℓ=1(E∥ηj − ηj,ℓ∥
2)1/2 < ∞ used by Hörmann and Kokoszka

(2010), Berkes et al. (2013) and Jirak (2013) to establish the cen-
tral limit theorem for sums of Bernoulli shifts. Since we need the
central limit theorem for sample correlations, highermoment con-
ditions and a faster rate in the approximability with ℓ-dependent
sequences are needed.

We assume that the sequences X and Y satisfy the following
conditions:

Assumption 1.1. E∥X0∥
4+δ < ∞ and E∥Y0∥

4+δ < ∞ with some
δ > 0,

Assumption 1.2. X = {Xi(t)}∞i=−∞
is an L4 absolutely approx-

imable Bernoulli shift in {ϵj(t),−∞ < j < ∞},

and

Assumption 1.3. Y = {Yi(t)}∞i=−∞
is an L4 absolutely approx-

imable Bernoulli shift in {ϵ̄j(t),−∞ < j < ∞}.

The functions defining the Bernoulli shift sequences X and Y as in
(1.1) will be denoted by gX and gY, respectively. The independence
of the sequences X and Y stated under H0 is conveniently given by:

Assumption 1.4. The sequences {ϵj(t),−∞ < j < ∞} and
{ϵ̄j(t),−∞ < j < ∞} are independent.

The parameter H defines the number of lags used to define the test
statistic. As n increases it becomes possible to accurately estimate
cross covariances for larger lags, and thus we allow H to tend to
infinity with the sample size. Namely,

Assumption 1.5. H = H(n) → ∞ and Hn−τ
→ 0, as n → ∞,

with some 0 < τ < 2δ/(4 + 7δ), where δ is defined in Assump-
tion 1.1.

To state the limit result for T̂n,H we first introduce the asymp-
totic expected value and variance. Let for all −∞ < j < ∞

γX(j) =


cov(X0(t), Xj(t))dt, γY(j) =


cov(Y0(t), Yj(t))dt

and define

µ =

∞
j=−∞

γX(j)γY(j). (1.4)

It is shown in Lemma B.1 that under Assumptions 1.2 and 1.3 the
infinite sum in the definition of µ above is absolutely convergent.
Let

σ 2
h = 2


· · ·

 
∞

ℓ=−∞

cov(X0(t), Xℓ(s))cov(Y0(u), Yℓ+h(v))

2

× dtdsdudv

and

σ 2
=

∞
h=−∞

σ 2
h . (1.5)

Theorem 1.1. If Assumptions 1.1–1.5 hold, then we have

nT̂n,H − (2H + 1)µ
(2H + 1)1/2σ

D
→ N ,

where N stands for a standard normal random variable.
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