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a b s t r a c t

The threshold diffusion process, first introduced by Tong (1990), is a continuous-time process satisfying a
stochastic differential equation with a piecewise linear drift term and a piecewise smooth diffusion term,
e.g., a piecewise constant function or a piecewise power function. We consider the problem of estimating
the (drift) parameters indexing the drift term of a threshold diffusion process with continuous-time
observations. Maximum likelihood estimation of the drift parameters requires prior knowledge of the
functional form of the diffusion term,which is, however, often unavailable.We propose a quasi-likelihood
approach for estimating the drift parameters of a two-regime threshold diffusion process that does not
require prior knowledge about the functional form of the diffusion term. We show that, under mild
regularity conditions, the quasi-likelihood estimators of the drift parameters are consistent. Moreover,
the estimator of the threshold parameter is super consistent andweakly converges to some non-Gaussian
continuous distribution. Also, the estimators of the autoregressive parameters in the drift term are jointly
asymptotically normal with distribution the same as that when the threshold parameter is known. The
empirical properties of the quasi-likelihood estimator are studied by simulation. We apply the threshold
model to estimate the term structure of a long time series of US interest rates. The proposed approach
and asymptotic results can be readily lifted to the case of a multi-regime threshold diffusion process.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In financial and insurancemarkets, diffusion processes have be-
come the standard tool for modeling returns and values for risk
management purposes. For example, a number of diffusion pro-
cesses have been used tomodel the term structure ofmarket yields
such as interest rate (Vasicek, 1977; Cox et al., 1985; Black and
Karasinski, 1991), some of which include time-dependent covari-
ates in themean function (Hull, 2010; Black et al., 1990). While the
functional form of the diffusion term differs in these models, their
drift terms stay affine (or can be transformed to linear functions).
Despite their relative computational convenience, linear diffusion
processes fail to capture nonlinear characteristics such as multi-
modality, asymmetric periodic behavior, time-irreversibility, and
the occurrence of occasional extreme events that are commonly
found in real data.

Continuous-time nonlinear models have proved increasingly
useful over the past decade for capturing the aforementioned non-
linear properties (Tong, 1990; Decamps et al., 2006). Although
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continuous-time nonlinear diffusion processes form a relatively
large model class, the field of empirical nonlinear time series
modeling is relatively under-explored, except for the first-order
continuous-time threshold autoregressive (CTAR)model proposed
by Tong (1990); see Section 2 for the definition of the CTARmodel,
and some of its properties. The first order CTAR model will be
simply referred to as the threshold diffusion (TD) process below.
Several approaches on the inference of TD processes with discrete-
time data have been proposed in the literature, e.g., Gaussian likeli-
hood estimation (Tong and Yeung, 1991; Brockwell and Hyndman,
1992; Brockwell, 1994; Brockwell et al., 2007), moment-based
estimators (Chan et al., 1992; Coakley et al., 2003), and Bayesian
approach (Pai and Pedersen, 1999). If sufficiently fine data are
available, the likelihood function can be approximated by Gir-
sanov’s formula (at least for the case of known diffusion term). An
advantage of Bayesian estimation is that even when the data are
not sufficiently fine, Bayesian data augmentation techniques could
be used; (see Elerian et al. (2001), Eraker (2001, 2004), Roberts and
Stramer (2001), Stramer and Roberts (2007)).

Within the under-developed literature on the inference of the
TD processes with continuous-time data, maximum likelihood is
preferable for efficiency consideration. Recently, Kutoyants (2012)
derived the asymptotic distribution for maximum-likelihood es-
timation of a TD model under restrictive conditions including
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bounded parameter space, known ordering among some param-
eters, and known functional form of the diffusion term. In practice,
the functional form of the diffusion term is generally unknown.
Thus, it is desirable to develop an estimation method that does not
require knowing the functional form of the diffusion term.

Here, we introduce a quasi-likelihood approach to estimate the
drift parameters of a TDmodel, without requiring prior knowledge
of the functional form of the diffusion term. The quasi-likelihood
is obtained by applying Girsanov’s theorem to the TD model with
constant diffusion coefficient even though the true diffusion term
may be non-constant and even nonlinear. The consistency and the
limiting distribution of the quasi-likelihood drift estimator of a 2-
regime TD model are derived in Section 4, under some regular-
ity conditions. Given data over T units of time, we show that the
threshold parameter is T -consistent and its limiting distribution
admits a closed-form pdf. Moreover, the autoregressive parameter
estimators are

√
T -consistent, and asymptotically independent of

the threshold estimator, with a limiting normal distribution which
is the same as that assuming known threshold. A simulation study
is conducted in Section 5 to illustrate the asymptotic results. In Sec-
tion 6, we apply the proposed method to study the term structure
of the US interest rate. We conclude briefly in Section 7. All proofs
are collected in Appendix A.

2. Nonlinear diffusion processes

We begin with the general nonlinear diffusion process:

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW (t) (1)

where the function µ(x, t) is the drift term (instantaneous mean
function), σ(x, t) is the diffusion term (σ 2(x, t) instantaneous
variance function) and W = {W (t)} stands for the standard
Brownian process. Here, we focus on the case that both the drift
and diffusion terms are time-homogeneous, i.e., µ(x, t) ≡ µ(x)
and σ(x, t) ≡ σ(x). The drift and the diffusion terms are generally
known up to some parameters, in which case we write µθ for
µ and σγ for σ where the drift parameter θ and the diffusion
parameter γ are vectors thatmay share some commonparameters.
For conciseness, these parameters are often suppressed.

Among all nonlinear diffusion processes, the first-order m-
regime threshold diffusion (TD)model,which is the first-order case
of the continuous-time threshold autoregressive process (Tong,
1990; Tong and Yeung, 1991), has received much attention in the
literature, and it is defined to be the solution of the following
stochastic differential equation

dX(t) =

m
1


β⊤

i


1

X(t)


dt + σidW (t)


I(ri−1 < X(t) ≤ ri) (2)

where −∞ = r0 < r1 < · · · < rm = ∞ are the threshold
parameters,β⊤

i = (βi0, βi1) are the autoregressive parameters and
σi’s are the diffusion parameters. In other words, the drift term is
piecewise linear while the diffusion term is piecewise constant,
and the two functions have identical break points. Specifically,
µ(x) =

m
i=1(βi0 + βi1x)I(ri−1 < x ≤ ri) and σ(x) =m

i=1 σiI(ri−1 < x ≤ ri). Thus, the TD process models the situation
that the underlying process is governed bym Ornstein–Uhlenbeck
(OU) sub-processes,with the ithOUgoverningmechanism in effect
whenever the process X(t) is in the ith regime, i.e., X(t) ∈ (ri−1, ri].
The TD process may switch regimes infinitely many times within
an arbitrary small interval of time due to the properties of the
Brownian motion.

Similar to Chan and Tong (1986), the hard-thresholding regime
switching mechanism may be smoothed by employing a soft-
thresholding rule. A smooth threshold diffusion (STD) model can
be obtained by replacing I(ri−1 < x ≤ ri) by F(x; ri, si) −

F(x; ri−1, si−1)where F(·; r, s) denotes the cumulative distribution
function of some location-scale family with location parameter r
and scale parameter s, for instance the family of normal or logistic
distributions. The proposed estimation method and much of the
theory developed below can be lifted to the STDmodel,with details
to be reported elsewhere.

For the stationary solution of a TD model to exist, the sub-
models of the two outermost regimes must be ‘‘stationary’’. The
following theorem is due to Brockwell and Hyndman (1992) (see
also Brockwell et al. (1991)).

Theorem 1. Suppose that σi > 0, i = 1, . . . ,m. Then the process
defined by (2) has a stationary distribution if and only if

lim
x→−∞

µ(x) > 0; lim
x→∞

µ(x) < 0,

i.e., β1,1 < 0 and βm,1 < 0, or in the case that β1,1 = 0 (βm,1 = 0),
then β1,0 > 0 (βm,0 < 0). Further, if the stationarity condition is
satisfied, the stationary density is given by

π(x) =

m
i=1

ki exp{(βi1x2 + 2βi0x)/σ 2
i }I(ri−1 < x ≤ ri),

where the constants {ki} are determined by the conditions that (i)
∞

−∞
π(x)dx = 1 and (ii) σ 2

i π(ri−) = σ 2
i+1π(ri+), i = 1, . . . ,m −

1, where π(ri−) and π(ri+) are the left and right hand limits of π at
ri. That is, the function σ 2(x)π(x) is continuous at all threshold points,
and the stationary density function π(x) is continuous only if the
instantaneous variance function σ 2(x) is continuous at the threshold
points.

Note that the stationary density is generally non-Gaussian,
asymmetric and often multi-modal for a TD process. For instance,
Fig. 1 displays the stationary density function of the process
dX(t) = {(−2 − 4X(t))I(X(t) ≤ 0) + (3 − 3X(t))I(X(t) >
0)}dt + 4dW (t), which is non-Gaussian and bimodal. The form of
the stationary density implies that it has finite moments of all or-
ders. Also, a stationary TDmodel is geometrically ergodic (Stramer
et al., 1996).

A more general TD model may be obtained by relaxing the
piecewise constant diffusion term to a piecewise smooth function,
for instance, a piecewise power diffusion term obtained by replac-
ing σi by σiXγi(t) where γi are parameters. The preceding more
general formulation enables us to model positive data without the
need for data transformation. The stationarity results stated in The-
orem 1 can be extended to the more general TDmodel. As an illus-
tration, consider the stationarity condition for the square-root case
when X is a positive process a.s., and σ(x) =

m
i=1 σi

√
xI(ri−1 <

x ≤ ri), where 0 = r0 < r1 < · · · < rm = ∞. We shall assume
that σi > 0, ∀i. Let Y (t) =

√
X(t). Then the stationary condition

for {X(t)} and {Y (t)} should be the same. By Ito’s formula,

dY (t) =

m
i=1


4βi0 − σ 2

i

8Y (t)
+

βi1

2
Y (t)


dt

+
σi

2
dW (t)


I(

√
ri−1 < Y (t) ≤

√
ri).

Thus, {X(t)} is stationary if 4β10 − σ 2
1 > 0 and βm1 < 0. Follow-

ing an argument in Karlin and Taylor (1981, p. 221), the stationary
density function can be shown to be

π(x) =

m
i=1

kix2βi0/σ
2
i −1 exp(2βi1x/σ 2

i )I(ri−1 < x ≤ ri) (3)

where the constants ki satisfy condition (i) of Theorem 1 and (ii’)
σ 2
i riπ(ri−) = σ 2

i+1riπ(ri+), i = 1, . . . ,m − 1. Thus, the station-
ary density is piecewise ‘‘Gamma’’-distributed. In summary, the TD
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