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a b s t r a c t

We propose Vuong-type tests to select between two moment inequality models based on their Kull-
back–Leibler distances to the true data distribution. The candidate models can be either non-overlapping
or overlapping. For each case, we develop a testing procedure that has correct asymptotic size in a uni-
form sense despite the potential lack of point identification. We show both procedures are consistent
against fixed alternatives and local alternatives converging to the null at rates arbitrarily close to n−1/2.
We demonstrate the finite-sample performance of the testswithMonte Carlo simulation of amissing data
example. The tests are relatively easy to implement.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Models defined by moment inequalities (and possibly some
equalities) have gained substantial popularity over recent years
as researchers try to move away from ad hoc structural assump-
tions in various areas of economics.1 Model selection problems in
this context arise naturally when researchers consider more than
one economic theory, each generating a set of moment inequali-
ties, or when they consider different parametrizations to form the
moment functions. While there is an emerging literature on pa-
rameter inference for moment inequality models, a procedure for
model selection has not been available.2 Existing model selection
methods for standard models (e.g. Vuong, 1989, Kitamura, 2000,
AIC, or BIC) are not applicable because moment inequality models
are non-traditional in the ways discussed shortly below.

E-mail address: xshi@ssc.wisc.edu.
1 They have been used to model discrete games with multiple equilibria

(Andrews et al., 2004, Ciliberto and Tamer, 2009), to deal with missing or interval
data (Manski, 2005), to study dynamic games that are otherwise too complicated to
analyze empirically (Pakes et al., 2007, Pakes, 2010) and to increase the precision of
estimators in dynamic macroeconomics models (Moon and Schorfheide, 2009).
2 A non-exhaustive list of papers on parameter inference of moment inequality

models includes Chernozhukov et al. (2007), Andrews and Barwick (2012), Bugni
(2010), Canay (2010), Romano and Shaikh (2010), Andrews and Guggenberger
(2009), Andrews and Soares (2010) and Andrews and Shi (2013a,b).

This paper provides a way to select the better model from
two competing moment inequality models. We design quasi-
likelihood-ratio tests for the null hypothesis that both models
are equally close to the true data distribution in terms of the
Kullback–Leibler (KL) divergence. When the null does not hold,
the tests direct the researcher to the model that is closer to the
true distribution with probability approaching one. Our tests are
relatively easy to compute for two reasons. First, they use standard
normal critical values. Second, although the sample criterion
functions can have multiple (or even a continuum of) maximizers
due to partial identification, one does not need to compute all the
maximizers to implement the tests.

Moment inequality models are non-traditional in two ways.
First, parameters in thesemodels typically are not point-identified.
For that reason, the maximizers of a sample criterion function do
not converge to a point in the parameter space. Thus, traditional
model selection methods that rely on the asymptotic normality of
the maximizers do not apply. Second, moment inequality models
have slackness parameters whose (pseudo-) true values may be
on the boundary of the parameter space.3 The parameter-on-the-
boundary problem makes the criterion function for the original

3 One can view the moment inequality model Em(Xi, θ) ≥ 0 as a moment
equality model with an additional parameter a: Em(Xi, θ) − a = 0. The additional
parameter is the slackness parameter. The space of a is Rdm

+ . The true value of a is on
the boundary of Rdm

+ whenever a moment inequality holds as an equality under the
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model parameters non-differentiable even in the limit. The non-
differentiability can occur anywhere in the original parameter
space. Thus, the first-order-condition method or the standard
quadratic approximation method cannot be used to derive the
convergence rate of the estimators.

The first nontraditional feature prompts us to develop a new
technique utilizing the stochastic equicontinuity of certain em-
pirical processes to show the asymptotic normality of the quasi-
likelihood ratio statistic and the consistency of an estimator of its
asymptotic variance. The technique does not require any conver-
gence rate of the sample maximizers. We only need a weak notion
of consistency: the sample maximizers approach the pseudo-true
set as the sample size goes to infinity. This technique potentially is
useful to establish the asymptotic distribution of the Vuong (1989)
test statistic in parametric models andmoment equality models as
well when the Hessian matrix of the likelihood ratio is not invert-
ible.

The asymptotic normality and the consistency results men-
tioned above are sufficient for developing a valid model selection
test if the asymptotic variance of the quasi-likelihood ratio statis-
tic is bounded away from zero. The latter condition holds when the
twomodels compared are non-overlapping in the sense defined in
latter sections. When the two models are overlapping, the conver-
gence rate of the sample maximizers is needed.

The secondnontraditional feature ofmoment inequalitymodels
made the traditional approaches to derive convergence rate not ap-
plicable.Wemodify the standard quadratic approximationmethod
and construct quadratic upper and lower bounds for the sample
and population criterion functions. Combining those bounds, we
show that the sample maximizers approach the pseudo-true set at
n−1/2-rate. The rate is then used to motivate an adjustment factor
to the studentized quasi-likelihood ratio statistic. The adjustment
factor guarantees that the adjusted test is uniformly valid for over-
lapping models.

The tests proposed in this paper extend theVuong test (formax-
imum likelihood models) proposed in the seminal paper Vuong
(1989) to models defined by moment inequalities. As such, this
paper belongs to the literature that extends Vuong (1989) to
various other types of models. Kitamura (2000) and Rivers and
Vuong (2002) extend the Vuong test to models defined by mo-
ment equalities. In particular, Kitamura (2000) employs expo-
nential tilting criterion, which is adapted to moment inequality
models in the current paper. Chen et al. (2007) propose a Vuong-
type procedure to select between a parametric model and a mo-
ment equality model. All these previous papers assume that the
true parameters are point-identified and are in the interior of the
parameter space. These assumptions are suitable for parametric
models and moment equality models, but not for the moment in-
equality models considered in this paper. On the other hand, this
paper does not make those assumption. Thus, our tests apply to
point or partially identified moment inequality or equality models
with or without parameter on the boundary. In the special case of
non-overlapping point identified moment equality models with-
out parameter on the boundary, our test is the same as Kitamura’s
(2000).

In addition to addressing the partial identification and para-
meter-on-the-boundary problems, another important feature dis-
tinguishing our tests from the other Vuong-type tests is that we
choose the critical values based on uniform asymptotics which
guarantee correct asymptotic sizes of the tests. Vuong-type tests
with critical values chosen based on pointwise asymptotics may
have size distortion when the candidate models are overlapping.

true data distribution. In this example, {Xi} is the data, m is a Rdm -valued moment
function and θ is a finite-dimensional parameter.

The reason is that the pointwise asymptotic distributions of the test
statistics are discontinuous in the data generating process. When
the data generating process is close to the discontinuity point, the
finite sample distributions of the test statistics are not well ap-
proximated by their pointwise asymptotic distributions. The poor
approximation causes size distortion in finite samples (Shi, forth-
coming).We adjust the test statistic in the overlapping case to take
into account the discontinuity and by doing so control the asymp-
totic size of the tests uniformly.

An alternative to our Vuong-type framework is the Cox (1961)-
type nonnested hypothesis testing framework. For a Cox-type test,
the null hypothesis is that a model P is correctly specified and
the alternative hypothesis is that an alternative model Q is cor-
rectly specified. Though frequently used to choose one model
from multiple candidate models, Cox-type tests are intended as
a procedure for model evaluation rather than model selection. A
Cox-type test does not have a clear interpretationwhen bothmod-
els are misspecified. For details on Cox-type tests, see the sem-
inal paper by Cox (1961), the survey papers by Gourieroux and
Monfort (1994) and Pesaran and Weeks (1999), generalizations
to the encompassing principle by Mizon and Richard (1986), and
the extension to moment equality models by Ramalho and Smith
(2002). It is of interest to extend themoment encompassing princi-
ple to partially-identified moment inequality models possibly us-
ing some of the techniques developed in this paper. We leave this
to a separate project.

The rest of the paper is organized as follows. Section 2 in-
troduces the model selection problem for moment inequality
models and gives a few examples. Section 3 presents prelimi-
naries on the pseudo-distance measure and the solution to the
distance-minimizing problem. Section 4 describes the tests, one
for non-overlapping models and the other for overlapping models.
Sections 5 and 6 establish the asymptotic size of the test for non-
overlapping models and that for overlapping models, respectively.
Section 7 determines the power properties of the tests. Section 8
presents Monte Carlo simulation results for a missing data exam-
ple. The proofs are in the appendix.

We useNδ(θ) to denote a closed ball centered at θ with radius δ,
∥·∥ to denote the Euclidean norm, and ‘‘≪’’ to denote ‘‘is absolutely
continuous with respect to (w.r.t., hereafter)’’. We use Xi to denote
an observation, X to denote the space on which Xi is defined. We
useP andQ to denote the candidatemodels, and P andQ to denote
generic distributions in P and Q, respectively. We useµ to denote
a generic true distribution onX, which does not necessarily belong
to either of the models. We use Greek letters θ and β to denote the
finite-dimensional parameters in the models, Θ and B to denote
the corresponding parameter spaces, and m and g to denote the
moment functions.

2. Model selection problems

We consider two moment inequality/equality models P =
θ∈Θ Pθ and Q =


β∈B Qβ , where Pθ and Qβ are the set of

distributions that are consistent with the moment conditions for
parameters θ and β , respectively:

Pθ =


P : EPmj(Xi, θ) = 0 for j = 1, . . . , dp,

EPmj(Xi, θ) ≥ 0 for j = dp + 1, . . . , dm


Qβ =


Q : EQ gj(Xi, β) = 0 for j = 1, . . . , dq,

EQ gj(Xi, β) ≥ 0 for j = dq + 1, . . . , dg


. (2.1)

In the above equation, {Xi ∈ X}
n
i=1 is a random sample

generated from µ, m = (m1, . . . ,mdp ,mdp+1, . . . ,mdm)
′ and g =

(g1, . . . , gdq , gdq+1, . . . , gdg )
′ are Rdm and Rdg -valued moment

functions known up to the finite-dimensional parameters θ and β ,
respectively, Θ ⊂ Rdθ , B ⊂ Rdβ , and EP denotes the expectation
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