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a b s t r a c t

This paper considers the evaluation of the average treatment effect (ATE) in a triangular system with
binary dependent variables. I impose a threshold crossing model on both the endogenous regressor and
the outcome. The bounds proposed by Shaikh and Vytlacil (2011,SV) on the ATE are sharp only under
a restrictive condition on the support of the covariates and the instruments, which rules out a wide
range of models and many relevant applications. In this setting, I provide a methodology that allows the
construction of sharp bounds on the ATE by efficiently using the variation of covariates without imposing
support restrictions.
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0. Introduction

This paper considers the evaluation of the average treatment ef-
fect (ATE) of a binary endogenous regressor on a binary outcome
when a threshold crossing model on both the endogenous regres-
sor and the outcome is imposed. The joint threshold crossing (JTC)
model was recently investigated by Shaikh and Vytlacil (2011), but
their proposed bounds are sharp only under a critical restriction
imposed on the support of the covariates and the instruments. The
support condition required is very strong and often fails to hold
for a wide range of models. SV takes advantage of the threshold
crossing condition imposed on the endogenous regressor to refine
the known bounds on the ATE in the model with an unrestricted
endogenous regressor. However, whenever the support condition
fails, their bounds are still valid but no longer sharp, because they
do not take full advantage of the threshold crossing condition im-
posed on the endogenous regressor. I show in this paper how to
fully exploit the second threshold crossing restriction imposed on
the endogenous regressor without imposing any support restric-
tions.

Therefore, this paper complements SV’s work by providing a
methodology that allows the construction of sharp bounds on
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the ATE by efficiently using variation on covariates. The proposed
methodology requires only mild regularity conditions on the dis-
tribution of unobservable variables and a typical independence as-
sumption between the covariates (except the binary endogenous
regressor) and the unobservable variables. Inference of the bounds
can easily be carried out using the inferential methods of Cher-
nozhukov et al. (2013) or of Andrews and Shi (2014). The proof
of the sharpness of the proposed bounds is based on copula the-
ory and a characterization theorem proposed by Chiburis (2010).
Indeed, a similar objective was pursued by Chiburis (2010), how-
ever his characterization is not an operational characterization in
the sense that it does not allow a direct computation of the identi-
fied set based on the knowledge of the observed probabilities in
the data because the copula is an infinite-dimensional nuisance
parameter. This makes his approach computationally infeasible in
most cases of interest. Also, the JTCmodel is a particular case of the
Chesher (2005), and Jun et al. (2010) models. However, their anal-
yses imposed an additional restriction on the joint distribution of
the unobservable variables. I do not impose such a restriction.

The rest of the paper is organized as follows. The following sec-
tion considers joint threshold crossing models, explains why SV’s
bounds fail to be sharp without their support condition, and pro-
poses a methodology to sharpen their bounds in this case. The sec-
ond and third sections present a numerical illustration and discuss
the inference procedure. The last section concludes, and proofs are
collected in the Appendix.
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1. Joint threshold crossing model

I adopt the framework of the potential outcome model Y =

Y1D + Y0(1 − D), where Y is an observed outcome, D denotes
the observed binary endogenous regressor, and Y1, Y0 are potential
outcomes. The potential outcomes and D are as follows:

Yd = 1{ν(d, X) > u}, d = 0, 1
D = 1{p(X, Z) > v},

(1.1)

where u and v are normalized to be uniformly distributed u, v ∼
U[0, 1], 1{.} denotes the indicator function, ν(0, X) and ν(1, X)
are unknown functions of a vector of exogenous regressors X , and
p(X, Z) is an unknown function of a vector of exogenous regres-
sors [X, Z]. The formal assumption I use in this section may be ex-
pressed as follows:

Assumption 1. (X, Z) and (u, v) are statistically independent.

X and Z denote the respective supports of the variables X and
Z . Since u, v ∼ U[0, 1] and Y and D are binary, we have the fol-
lowing: ν(d, x) = P(Yd = 1 | X = x) = E[Yd|X = x], and
p(x, z) = P(D = 1 | X = x, Z = z) for all (x, z) ∈ Supp(X, Z),
where Supp(X, Z) denotes the joint support of (X, Z). The normal-
ization of u is convenient when the potential outcomes are bi-
nary since it implies E[Yd | X = x] = ν(d, x), and bounds on
treatment effect parameters can be derived from bounds on the
structural parameters ν(1, x) and ν(0, x). Then, we may define the
average structural function (ASF) and the average treatment ef-
fect (ATE), respectively, as: ν(d, x) and ∆ν(x) = ν(1, x) − ν(0, x).
Let Supp(P | X) denotes the support of p(X, Z) conditional on X.
When no confusion is possible, I shall use the shorthand notation
p = p(x, z), p′

= p(x′, z ′), where p(x, z) ∈ Supp(P|X = x) and
p(x′, z ′) ∈ Supp(P|X = x′), P(i, j|x, p) = P(Y = i,D = j|X =

x, p(X, Z) = p), and sign(a) = 1{a > 0} − 1{a < 0}.
SV used the JTC equations determining Y andD alongwith addi-

tional assumptions to identify the sign of [ν(1, x′) − ν(0, x)] from
the distribution of observed data, and then they took advantage
of this information to construct bounds on ASF that exploit vari-
ation in covariates. However, their strategy provides bounds on
the ASF that are sharp only whenever Supp(X, P(X, Z)) = X ×

Supp(P(X, Z)), namely the ‘‘critical support condition’’. Moreover,
whenever Supp(P | X = x)∩ Supp(P | X = x′) is empty or reduced
to a singleton, SV’s bounds do not take advantage of the threshold
restriction imposed on the equation determining D. This ‘‘critical
support condition’’ implies that Supp(P | X = x) = Supp(P | X =

x′) for all (x, x′) ∈ X × X; in other words for all (x, x′) ∈ X × X
and z ∈ Supp(Z |X = x), there exists z ′

∈ Supp(Z |X = x′) such
that p(x, z) = p(x′, z ′). This type of ‘‘perfect matching restric-
tion’’ is difficult to achieve inmany applications. As Chiburis (2010)
pointed out, the SV critical support condition tends to hold only
when p(x, z) does not depend on x, which is only true in the rare
case of a complete dichotomy between variables in the outcome
equation and variables in the treatment equation. I will now show
how it is possible to sharpen bounds on the ASF without imposing
the ‘‘critical support condition’’.

1.1. Sharpening the bounds

1.1.1. First main idea
Let us present a simple intuition of the main idea of this paper.

We have

ν(0, x) = P(u ≤ ν(0, x), v ≥ p(x, z))
+ P(u ≤ ν(0, x), v ≤ p(x, z)),

where P(u ≤ ν(0, x), v ≥ p(x, z)) = P(1, 0|x, p), but the second
term P(u ≤ ν(0, x), v ≤ p(x, z)) = P(Y0 = 1,D = 1|X = x, Z =

Table 1
Collection of sets.

P+(x′, p) = {p(x′, z ′) = p′
∈ Supp(P|X = x′) : p ≤ p′

}

P−(x′, p) = {p(x′, z ′) = p′
∈ Supp(P|X = x′) : p ≥ p′

}

Ω+

d1d2 (x) = {x′
: ν(d1, x) ≤ ν(d2, x′)}

Ω−

d1d2 (x) = {x′
: ν(d1, x) ≥ ν(d2, x′)}

z) is the unobserved counterfactual. SV proposed bounding this
counterfactual by exploiting variation in covariates. Indeed, SV’s
idea suggests that we may bound the unobserved counterfactual
for untreated individuals (D = 0) with characteristic x by using in-
formation on treated individuals (D = 1) with different character-
istics x′ whenever they have exactly the same probability of being
treated. In fact, if we have a treated individualwith characteristic x′

belonging to the set ∆p(x) = {x′
: ν(0, x) ≤ ν(1, x′)} ∩ {x′

: ∃p′
∈

Supp(P | X = x′), p(x, z) = p(x′, z ′)}, the proposed bounds of SV
for the unobserved counterfactual can be summarized as follows:

P(u ≤ ν(0, x), v ≤ p(x, z))

≤


P(u ≤ ν(1, x′), v ≤ p(x′, z ′)) if x′

∈ ∆p(x)
p(x, z) if ∆p(x) = ∅,

where P(u ≤ ν(1, x′), v ≤ p(x′, z ′)) = P(1, 1|x′, p′). However,
this idea is not sufficient to provide sharp bounds. My argument
relies on the fact that under the threshold crossing model assump-
tion imposed on the treatment (D), wemay bound the unobserved
counterfactual P(Y0 = 1,D = 1|x, z) by using information on
treated individuals with different characteristics x′ even if they
have different probabilities of being treated. In fact, if we have a
treated individual with characteristic x′ belonging to the subset
∆̃p(x) = {x′

: ν(0, x) ≤ ν(1, x′)} ∩ {x′
: ∃p′

∈ Supp(P | X =

x′), p(x, z) ≤ p(x′, z ′)}, the unobserved counterfactual may be
bounded as follows:

P(u ≤ ν(0, x), v ≤ p(x, z)) ≤


P(1, 1|x′, p′) if x′

∈ ∆̃p(x)
p(x, z) if ∆̃p(x) = ∅.

When p(x, z) ∉ Supp(P | X = x) ∩ Supp(P | X = x′), we cannot
identify P(u ≤ ν(1, x′), v ≤ p(x, z)) from the data. In this case,
SV proposed bounding P(u ≤ ν(1, x′), v ≤ p(x, z)) from above
by P(v ≤ p(x, z)) = p(x, z). However, whenever it is possible to
find x′

∈ ∆̃p(x), I propose bounding P(u ≤ ν(1, x′), v ≤ p(x, z))
from above by P(u ≤ ν(1, x′), v ≤ p(x′, z ′)) = P(1, 1|x′, p′),
which may be lower than P(v ≤ p(x, z)) = p(x, z) in many cases.
Since ∆p(x) ⊆ ∆̃p(x), it is easy to see that we may obtain an im-
provement over SV’s bounds by using ∆̃p(x) instead of∆p(x), espe-
cially when ∆p(x) is empty or ∆p(x)={x}. When Supp(P|X = x) =

Supp(P|X = x′), we have ∆̃p(x) = ∆p(x); this fact explainswhy the
SV bounds would be sharp when Supp(P|X = x) = Supp(P|X =

x′). Hereafter, I adopt the convention that the supremum over the
empty set is zero and the infimum over the empty set is one. Be-
fore formalizing this idea, I will define some subsets summarized
in Table 1.

Indeed, for all x′
∈ Ω+

01(x) and p(x′, z ′) ∈ P+(x′, p), we have:

ν(0, x) = P(u ≤ ν(0, x), v ≥ p(x, z))
+ P(u ≤ ν(0, x), v ≤ p(x, z))

≤ P(u ≤ ν(0, x), v ≥ p(x, z)) + P(u ≤ ν(1, x′), v ≤ p(x, z))
≤ P(u ≤ ν(0, x), v ≥ p(x, z))

+ min[P(u ≤ ν(1, x′), v ≤ p(x′, z ′)), p(x, z)].

Therefore,

ν(0, x) ≤ P(1, 0|x, p) + min[ inf
x′∈Ω

+

01(x)
inf

p′∈P+(x′,p)
P(1, 1|x′, p′), p].

(1.2)
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