Journal of Econometrics 187 (2015) 131-153

journal homepage: www.elsevier.com/locate/jeconom

E]

Contents lists available at ScienceDirect

Journal of Econometrics

T

Simulated maximum likelihood estimation for discrete choices using
transformed simulated frequencies”

PN
@ CrossMark

Donghoon Lee?, Kyungchul Song ™*

2 Federal Reserve Bank of New York, 33 Liberty Street, New York, NY, 10045, United States
b Vancouver School of Economics, University of British Columbia, 997 - 1873 East Mall, Vancouver, BC, V6T 1Z1, Canada

ARTICLE INFO

ABSTRACT

Article history:

Received 5 June 2013

Received in revised form

2 June 2014

Accepted 19 December 2014
Available online 12 February 2015

JEL classification:
C12
C24
C52

Many existing methods of simulated likelihood for discrete choice models require additive errors that
have normal or extreme value distributions. This paper focuses on a situation where the model does not
admit such additive errors so that the popular method of GHK or logit estimation is not applicable. This
paper proposes a new method of simulated likelihood that is free from simulation bias for each finite num-
ber of simulations, and yet flexible enough to accommodate various model specifications beyond those of
additive normal or logit errors. The method begins with the likelihood function involving simulated fre-
quencies and finds a transform of the likelihood function that identifies the true parameter for each fi-
nite simulation number. The transform is explicit, containing no unknowns that demand an additional
step of estimation. The estimator achieves the efficiency of MLE when the simulation number increases
fast enough. This paper presents and discusses results from Monte Carlo simulation studies of the new

method.
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1. Introduction

Discrete choice models have long been used in a wide range of
empirical fields of economics. While a discrete choice model typi-
cally specifies the data generating process up to a parametric fam-
ily of distributions, maximum likelihood estimation is infeasible
in practice when the explicit evaluation of the likelihood is not
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possible. Since the seminal work of Lerman and Manski (1981), the
approach of simulation-based inference has been increasingly in-
strumental for overcoming this difficulty, providing the researcher
with a wider spectrum of flexibility in modeling. (See Hajivassil-
iouand Ruud (1994), Stern (1997), Gouriéroux and Monfort (1997),
and Train (2003) for a review of the literature and references
therein.) More recently, Chernozhukov and Hong (2003) offer a
general MCMC based method for M-estimation. Their method can
also be used in the simulation-based estimation. Armstrong et al.
(2013) analyzed the asymptotic distribution of simulation-based
estimators for simulation draws common across individual sam-
ple units.

This paper proposes a new approach of simulated likelihood
estimation. The first merit of the approach is that the estimator
is consistent even with the finite simulation number. As far as
we know, our estimator is the only simulated likelihood estimator
with such a property. Second, our method can be used for a wide
class of models, whenever one can simulate the individual choices.
Hence one does not need to assume additive normal or logit
errors as often done in simulation-based estimation. Third, the
method does not suffer from a log of zero problem even with the
finite simulation number, unlike the classical simulated frequency
method. Fourth, our estimator achieves the asymptotic efficiency
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of maximum likelihood estimator when the simulation number
grows faster than the square root of the sample size. Finally, our
method is easy to use, accompanying almost no computational cost
additional to the classical simulated frequency method.

However, our method shares one disadvantage with the sim-
ulated frequency method of likelihood estimation or moment es-
timation (Lerman and Manski (1981) and McFadden (1989)): the
sample objective function is discontinuous in the parameter. This
may cause a higher computational cost than the method of GHK
or mixed logit error modeling. Hence we do not propose our
method as a competitor of the latter simulation methods. Rather
we propose it as a simulated-likelihood method for an environ-
ment where GHK or mixed logit approach is not applicable. Such
an environment arises in many structural models of individual
decision-making, where unobserved heterogeneity enters nonlin-
early in latent processes. (See e.g. Keane and Wolpin (1994, 1997).)

Our method is built on the main finding of this paper that there
exists a simple and explicit transform of a simulated likelihood
function whose maximization delivers a consistent estimator even
with a finite simulation number. The transform is algebraically ex-
plicit, depending on no unknowns. Furthermore, the use of the
transform does not require any restrictions on the specification of
the random utilities, and hence flexibly applies to many discrete
choice models that have a nonlinear, nonnormal form of hetero-
geneity. We call this new method transformed simulated frequencies
(TSF) method.

In this paper, we formally present conditions for identification
and derive the asymptotic theory for the estimator in both the
cases of simulation numbers fixed and increasing with the sample
size. Our exposition is made through easily verifiable, high-level
conditions to emphasize the flexibility of our approach. The con-
ditions require only weak regularity conditions for the stochastic
link between the decision variables and the observed covariates.

Here is the summary of the asymptotic properties of the esti-
mators based on the TSF method. When the simulation number is
fixed and the sample size n increases, the estimator is consistent at
the rate of /n, like the maximum score estimator (Manski (1975)
and Kim and Pollard (1990)). In the case of an increasing number of
simulations, we establish that the estimator is v/n-consistent and
asymptotically normal as the simulation number increases to in-
finity at a rate faster than /n. Under this same condition, the esti-
mator achieves the asymptotic efficiency of MLE.

To illustrate the usefulness of our approach, we performed a
Monte Carlo simulation study based on a schooling choice model
which involves heterogeneity in discount factor and ability. More
specifically, the discount factor is assumed to be correlated with
other observed individual characteristics and also an unobserved
characteristic. The study considered the simulated MLE based
on the classical simulated frequency method, and the simulated
method of moments (SMM). Our estimator mostly dominates
the classical simulated frequency method. The domination is
prominent especially when the simulation number is small and
the sample size is large. Also our method performs better than
SMM without using an optimal weighting matrix, and performs
comparably with SMM using an optimal weighting matrix but with
shorter computation time than SMM.

Since the seminal paper by Lerman and Manski (1981), the
simulation-based method has been widely used in empirical
researches. Many early researches since Lerman and Manski
(1981) have focused on developing a new simulation method
that overcomes the drawbacks of Lerman and Manski (1981). For
example, the method of Stern (1992) and the method of GHK sim-
ulator (Geweke (1989), Hajivassiliou (1990) and Keane (1993)) en-
able one to simulate choice probabilities from a probit model that
are smooth in parameters. Hajivassiliou (1990) and Hajivassiliou
and McFadden (1998) proposed a different method of simulated

likelihood that uses simulated scores to construct simulated mo-
ment conditions and proved efficiency of the estimators. Another
increasingly popular class of discrete choice models include mixed
multinomial logit models (MMLM) (McFadden and Train (2000)
and see references therein). The MMLMs offer a flexible way of
modeling heterogeneity through random coefficient specifications
and yet requires the presence of additive logit errors. Lee (1995)
analyzed the bias properties of simulation-based estimators. See
Kristensen and Salanié (2013) for a recent contribution in a sim-
ilar spirit. Fermanian and Salanié (2004) developed nonparamet-
ric simulated maximum likelihood estimation and Kristensen and
Shin (2012) extended their framework to a wider class of dynamic
models. Armstrong et al. (2013) analyzed the asymptotic distribu-
tion of simulation-based estimators when the simulation draws
are common across the sample units. Chernozhukov and Hong
(2003) developed an MCMC approach to various extremum esti-
mation problems. Their approach can also be applied to various
simulation-based estimation where the sample objective function
is generated by simulations. (See Jun et al. (2011) for a similar
MCMC approach for maximum score estimators.) Ackerberg (2009)
makes a notable contribution to reduce the simulation burden for
various structural estimation environments.

The remainder of this paper is organized as follows. In Section 2,
we define the class of discrete choice models, discuss simulated
MLE, and offer a preview of our method. In Section 3, we present
the main results of this paper which formally establish identifica-
tion and consistency of the proposed estimator. It is also shown
that the estimator is asymptotically normal when the simulation
number goes to infinity fast enough. In Section 4, we present and
discuss results from Monte Carlo simulation studies. Section 5 con-
cludes. All the technical proofs are relegated to the Appendix.

2. Discrete choice models and TSF
2.1. Methods of simulated likelihoods

Suppose that a binary variable, D;; € {0, 1}, of a unit i realizing
the jth state, is stochastically linked with an observed covariate
vector X; as follows:

Dy = §;(Xi, mi; 6o),

whereX; = (Xjq, ..., X,-])T represents a vector of observed random
variables, n; = (i1, ..., ni])T a vector of unobserved variables,
and 6, € ® C R? the parameter to be estimated. The number J
denotes the number of the states and n the number of the cross-
sectional units in the data set. The parametric maps 6;(X;, n;; 6o)
link exogenous variables X; and ; to endogenous outcomes Dj;, and
satisfies that

(2.1)

J
> 68X ni:0) =1, foralld € ©.
=1
We assume that X; and n; are independent. For example, in the case
of discrete choice model with random utilities, one can take
8i(Xi, mi; 60) = 1{A;(X;, ni; 60) = 0},
where

Aj(X;, mi; 60) = u;(X;, mi; 6p) — 15?;«’;1:75{# ur(Xi, ni; 6o),

and u;(X;, n;; 0) is a random utility from choosing action j (Mc-
Fadden (1974)). However, the TSF method does not require that
the indicator §;(X;, n;; 6p) be generated through a certain index
Aj(Xi, mi; o).

The conditional choice probability of the ith agent choosing the
jth option is defined by

pi(Xi, 6o) = P {D; = 1|X} .
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