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a b s t r a c t

This paper proposes a test of the null of integer integration against the alternative of fractional integration.
Thenull of integer integration is satisfied if the series is either I(0)or I(1).We reject the null if theKPSS test
rejects I(0) and a unit root test rejects I(1). We suggest a new unit root test (a lower-tail KPSS test applied
to the differenced data) to use in this procedure. We provide critical values under standard asymptotics
and fixed-b asymptotics.We prove the consistency of this testing procedure against I(d) alternatives with
0 < d < 1, and simulation evidence on the size and power of the test in finite samples is provided.
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1. Introduction

In this paperwe propose a test of the null hypothesis of ‘‘integer
integration’’ against the alternative of fractional integration. More
precisely, the null is that the series is either I(0) or I(1), while the
alternative is that it is I(d)with 0 < d < 1. We will reject the null
of integer integration in favor of the alternative of fractional inte-
gration if the KPSS test rejects the null of I(0) and a unit root test
rejects the null of I(1). We propose a new unit root test to use as
the second part of the testing procedure, which is a lower-tailed
KPSS test based on first differences of the data, but other unit root
tests like the ADF test could also have been used. We will call this
two-part testing procedure the ‘‘Double-KPSS’’ test because it con-
sists of two steps, but we stress that we treat the test as one test
and evaluate its properties (consistency and finite sample size and
power) as such.

The KPSS test of Kwiatkowski et al. (1992) was originally sug-
gested as a test of the null of (short memory) stationarity against
the alternative of a unit root. Conversely, standard unit root tests
like the Dickey–Fuller tests, the augmented Dickey–Fuller (ADF)
test of Said and Dickey (1984) or the Phillips–Perron test of Phillips
and Perron (1988) were viewed as tests of the null of a unit root
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against the alternative of short-memory stationarity. So if the KPSS
test rejected but the unit root test did not, the conclusion was that
the series had a unit root. If the unit root test rejected but the KPSS
test did not, the conclusion was that the series was short-memory
stationary. If neither test rejected, the conclusionwas that the data
were not informative enough to decidewhether the serieswas I(0)
or I(1). However, if both tests rejected, there was in some sense a
contradiction.

This apparent contradiction can be resolved by considering a
wider class of processes, specifically long-memory processes. The
leading example, and the one that we consider in this paper, is
the I(d) process (with 0 < d < 1) of Adenstedt (1974), Granger
and Joyeux (1980), and Hosking (1981). Since both the KPSS test
and unit root tests have power against long-memory alternatives,
the ‘‘double rejection’’ outcome can be taken as evidence that the
series has long memory, as opposed to being either I(0) or I(1).
This is not a novel observation. However, this paper is novel in its
consideration of the double-testing procedure as a single test, and
its investigation of the size and power properties of this test. In
this regard, the basic observation is that if we set the nominal size
of each of the two tests to 5%, the double test also has size of 5%
asymptotically. For example, if the DGP is I(0), then asymptotically
the KPSS test will reject with probability 5% while the unit root
test will reject with probability one, while if the DGP is I(1) the
converse will occur. So whether the data are I(0) or I(1), the
probability of rejection of the double test is asymptotically 5%.

The practical issue to be faced is to what extent we can
be reasonably sure that the double rejection outcome is due to
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fractional integration, as opposed to size distortions of the test
under the I(0) or I(1) null. For example, Caner and Kilian (2001)
and Müller (2005) have shown that the KPSS test has large size
distortions if the DGP is AR(1)with autoregressive coefficient near
unity. Conversely, Dejong et al. (1992), Phillips and Perron (1988)
and Vogelsang and Wagner (2013), among others, have found
that the Dickey–Fuller test and its variants can have large size
distortions, especially if the DGP is ARIMA(0, 1, 1) with moving
average root near (negative) unity. This does not imply that the
Double-KPSS test will suffer from large size distortions in either
of these cases, since the cases for which the KPSS test has large
size distortions correspond to cases in which the unit root test
may have low power, and conversely. However, it does argue for
a careful investigation of the size and power properties of the new
test in finite samples.

As noted above, the specific unit root test that we will use in
this paper is a lower-tail KPSS test based on the data in differences.
We considered using the KPSS unit root test suggested by Shin and
Schmidt (1992) and Breitung (2002). However, as shown by Lee
and Amsler (1997), the KPSS unit root test is not consistent against
I(d) alternatives with 1/2 < d < 1. We also considered using
the ADF test, but this test is known to have low power against
I(d) alternatives (e.g. Diebold and Rudebusch (1991), Hassler and
Wolters (1994)), and there is also the practical consideration
that it is easier to prove the consistency of our test against I(d)
alternatives for all d between zero and one than it is for the ADF
test. In simulation, it makes little difference whether we use our
new test or the ADF test. We also consider some alternative tests,
including the LM tests (under normality) of the hypothesis that d =

0 or d = 1 in the class of I(d)models with 0 ≤ d ≤ 1. These tests
have certain local optimality properties against I(d) alternatives.

The consistency of the Double-KPSS test depends on the con-
sistency of the KPSS test and of the unit root test we propose, and
these in turn depend on the number of lags used in the estima-
tion of the long-run variance going to infinity, but more slowly
than sample size. Under this assumption we have a single critical
value for each test (for each significance level), and we will refer
to these as the ‘‘standard asymptotics’’ critical values. They do not
depend on the kernel used to estimate the long-run variance or
on the bandwidth (so long as the number of lags behaves as as-
sumed above). However, following Kiefer and Vogelsang (2002a,b,
2005), we also consider ‘‘fixed-b asymptotics,’’ where b, defined as
the ratio of the number of lags to the sample size, is constant as the
sample size grows. The fixed-b critical values depend on the ker-
nel and on the value of b, and there is evidence in many settings
that they yield tests with smaller size distortions than the critical
values based on the standard asymptotics.

The main theoretical contribution of the paper is that we prove
the consistency of the Double-KPSS test against I(d) for all d
between zero and one. For the KPSS test, this can be shown using
existing results except for the case of d = 1/2, so we show the
divergence of the statistic for d = 1/2. For the new unit root test,
we establish its asymptotic distribution for d = 0, 0 < d < 1/2
and 1/2 < d < 1, and we show that the statistic converges to zero
in probability when d = 1/2. Besides these theoretical results, the
paper contains substantial simulation results to show the extent to
which this testing procedure is likely to be useful in finite samples.

The plan of the paper is as follows. Section 2 gives the def-
initions and basic properties of stationary short memory, long
memory and unit root processes, and explicitly states the testing
procedure we propose. Section 3 gives our asymptotic results, us-
ing the standard asymptotics. The asymptotic limits of the two
component tests are derived and consistency of the two-part test
is proved. Section 4 presents the fixed-b asymptotics. Section 5
presents the results of simulations which explore the finite sample
properties of the new test, and it also discusses alternative tests
which could be used in our double-testing procedure. Section 6

summarizes and concludes. Finally, an Appendix gives some proofs
and technical details.

2. Setup and assumptions

The data is assumed to be generated by the DGP:

yt = µ+ ϵt , t = 1, 2, . . . , T . (1)

That is, we allow for non-zero level of the yt series, but not trend.
Allowing for trend would not change the basic principles of this
paper, but it would change the asymptotics.

2.1. Null hypothesis

Under the null hypothesis {ϵt}
∞

t=1 is either a stationary short
memory process or a unit root process. That is, either {ϵt}

∞

t=1 itself
is a stationary shortmemory process or it is a cumulation of a short
memory process.

Let {zt}∞t=1 be a time series with zeromean, and let Zt =
t

j=1 zj
be its partial sum. {zt}∞t=1 is said to be a short-memory process if it
satisfies the following two conditions.

Assumption N1.

σ 2
= lim

T→∞

T−1E

Z2
T


exists and is nonzero. (2)

Assumption N2.

∀r ∈ [0, 1], T−1/2Z[rT ] ⇒ σW (r), (3)

where [rT ] denotes the integer part of rT , ⇒ means weak
convergence, and W (r) is the standard Wiener process.

In addition to Assumptions N1 and N2, further regularity condi-
tions are necessary for the consistency of HAC (heteroskedasticity
and autocorrelation consistent) estimators. Examples of such con-
ditions can be found in Andrews (1991), Newey and West (1987),
DeJong and Davidson (2000), Jansson (2002), and Hansen (1992).
We will implicitly assume that one or more of these sets of condi-
tions hold, so that the HAC estimators that appear in our test statis-
tics are consistent.

Unit root processes are the other class of DGP which belongs to
the null hypothesis. A time series is said to be a unit root process
if its first difference is a short memory process. Equivalently, a
cumulation of a short memory process is a unit root process. That
is, Zt is a unit root process if

(1 − L) Zt ≡ zt ∼ short memory process. (4)

2.2. Alternative hypothesis

Under the alternative hypothesis, {ϵt}
∞

t=1 is a fractionally
integrated process. Specifically, we will consider the alternative
that ϵt follows an I(d) process with 0 < d < 1:

(1 − L)d ϵt = ut , ut ∼ i.i.d Normal(0, σ 2
u ), (5)

The class of I(d) processes with 0 < d < 1
2 has been widely used

in econometrics to represent long memory processes.1 More gen-
erally, a stationary process is said to have long memory if

lim
n→∞

n
j=−n

γj = ∞, (6)

1 For more comprehensive treatment of this topic, see Giraitis et al. (2012).
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