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a b s t r a c t

In this paper, we study the generalised varying-coefficient models, where the link function is unspecified
and the response variable can be either continuous or discrete. As the link function is unspecified, the
models under investigation become unidentifiable. In this paper, we derive an identification condition for
the generalised varying-coefficient models, which is much weaker and more reasonable than that given
by Kuruwita et al. (2011) whose model can be seen as a special case of our modelling framework. Under
the identification condition, we introduce a nonparametric iterative procedure to estimate the functional
coefficient with its direction and norm as well as the unspecified link function, and then establish the
asymptotic properties of the resulting nonparametric estimators. Furthermore, a weighted least squares
based algorithm is provided to implement the iterative estimation procedure. The simulation studies and
empirical application show that our estimation methodology works quite well in both small and median
sample cases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Varying-coefficientmodels are important to explore the nonlin-
ear dynamic pattern in data analysis, and have experienced rapid
development in both theoretical and applied aspects; see, for ex-
ample, Fan and Zhang (1999), Li et al. (2002), Zhang et al. (2002),
Xia et al. (2004), Cai (2007), Sun et al. (2007), Cheng et al. (2009),
Wang et al. (2009), Zhang et al. (2009), Li and Racine (2010) and
Li and Zhang (2011). Extensions of the varying-coefficient mod-
els include varying-coefficient single-indexmodels (Lu et al., 2006;
Kuruwita et al., 2011) and generalised varying-coefficient models
(GVCMs; Cai et al., 2000; Zhang and Peng, 2010; Zhang, 2011). As in
the generalised linear models (GLMs), the existing literature usu-
ally assumes that the link function is specified in the GVCMs, and
the specification is often somewhat arbitrary. In some practical ap-
plications, the commonly-used link functions might be question-
able or evenmisleading. Thus, a data-driven approach to select the
link function is imperative. For the GLMs, a special case of GVCMs,
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there exists some literature on how to choose the link function
by a data-driven approach, see, for example, Pregibon (1980), Mc-
Cullagh and Nelder (1989), Mallick and Gelfand (1994), Weisberg
andWelsh (1994), and Carroll et al. (1995). However, to the best of
our knowledge, there is no data-driven approach to select the link
function in the GVCMs. Kuruwita et al. (2011) did use a data-driven
approach to select the link function in their model. However, their
model is in fact a varying-coefficient single-index model rather
than the GVCMs, which will be discussed in detail in Section 2.

Once the link function is unspecified, the GVCMswould become
very complicated and unidentifiable. It is not desirable to borrow
the identification condition for single-indexmodels (Horowitz and
Härdle, 1996; Carroll et al., 1997) and simply restrict the first com-
ponent of the functional coefficient to be positive and the norm
of the vector of the functional coefficient to be one to make the
models identifiable, see, for example, Kuruwita et al. (2011). Such
an identification conditionmakes themodels unrealistic and limits
their application, which will be explained later. This paper aims to
relax this restrictive condition and derive an identification condi-
tion which is weaker and more reasonable, and then introduce an
iterative procedure to estimate the nonparametric components in
the GVCMs. In order to achieve notational economy, we use GVC-
MUL to denote the GVCMs with unknown link functions. The main
contributions of the paper can be summarised as follows.
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(i) For the developed framework of GVCMUL, we allow that the
response variable can be either continuous or discrete, whereas
Kuruwita et al. (2011) only considered the case of continuous
response. Furthermore, making use of the modelling structure, we
derive a novel identification condition for theGVCMUL,which does
not require point-wise identifiability for the function (Kuruwita
et al., 2011). Our identification condition presented is not only
a matter of mathematical consideration, but also fundamentally
enlarges the scope of the application of the models and provides
a new way to estimate the unknown functions in the models.

(ii) The estimation of the unknown functions in GVCMUL is
challenging as the so-called ‘‘curse of dimensionality’’ issue (Fan
and Yao, 2003) becomes very acute under such circumstance. In
this paper, we propose an estimation procedure based on the
developed identification condition of GVCMUL and an iterative
procedure, which could avoid the dimensionality problem, to
estimate the functional coefficient, the direction and norm of
the functional coefficient, and the link function. Furthermore, we
introduce a weighted least squares based algorithm to implement
the proposed estimation procedure. In contrast, it is not very easy
to implement the method in Kuruwita et al. (2011) even under
their identification condition, because the minimisation in Step 1
of theirmethod could be too difficult to implement and its accuracy
is questionable.

(iii) Under some regularity conditions, we establish the asymp-
totic properties of the nonparametric estimators obtained by the
iterative estimation procedure. Furthermore, we conduct some
simulation studies to examine the finite sample performance of our
estimation procedure, and the simulation results show that our es-
timation procedure works quite well. In particular, through study-
ing the same simulated example as that in Kuruwita et al. (2011),
we show that our method performs much better than the method
in Kuruwita et al. (2011). We finally apply the proposed GVCMUL
and the estimation procedure to analyse some environmental data
from Hong Kong. The empirical results highlight the importance of
estimating the link function from the data.

The rest of the paper is organised as follows. The description
of the GVCMUL and the identification condition are given in
Section 2. The nonparametric estimation procedure is introduced
in Section 3, and the asymptotic theory is provided in Section 4. The
performance of the proposed estimation procedure is assessed by
some simulation studies and an empirical application in Section 5,
where the comparison between our estimation procedure and
the method in Kuruwita et al. (2011) is also presented. Section 6
concludes the paper. The assumptions and proofs of the asymptotic
results are given in an Appendix.

2. Model and identifiability

We next introduce the modelling structure and derive the
model identification condition. Let y be a response variable of
interest, which can be either continuous or discrete. When y is
discrete, we define the density function of y as its probability mass
function. Let U be a scalar covariate, X a p-dimensional vector of
covariates, andm(U, X) = E(y |U, X) the conditional expectation
of y givenU andX. Assume that the log conditional density function
of y given U and X is
C1(φ1) log f


m(U, X), y


+ C2(y, φ2)

with m(U, X) = g

XTa(U)


, (2.1)

where f (·, ·), C1(·) and C2(·, ·) are known, C1(φ1) > 0, φ1 and φ2
are unknown nuisance parameters, neither the link function g(·)
nor the functional coefficient a(·) =


a1(·), . . . , ap(·)

T
is known.

The modelling framework (2.1) is motivated by the commonly-
used assumption in both econometrics and statistics that the con-
ditional density of y given U and X belongs to the exponential
family, which is shown in the following example.

Example 2.1. Let the conditional density of y givenU andX belong
to the exponential family defined by

exp
y · η(U, X) − B1


η(U, X)


A(φ)

+ B2(y, φ)

, (2.2)

where the functions A(·), B1(·) and B2(·, ·) are known, φ is
the dispersion parameter and η(·, ·) is similar to the natural
parameter in the context of the parametric GLMswhich carries the
information from U and X. If we further assume that η(U, X) can
be expressed as η(U, X) = XTa(U), the conditional expectation
m(U, X) can be linked to B1


η(U, X)


via

m(U, X) = B ′

1


η(U, X)


= B ′

1


XTa(U)


, (2.3)

where B ′

1(·) is the derivative of B1(·). The above equation indi-
cates that η(U, X) can be written as a function m(U, X). Noting
that A(·), B1(·) and B2(·, ·) are assumed to be known, we can
thus show that the log conditional density function in the expo-
nential family can be written in the form given in (2.1). The link
function g(·) (which is unknown in our modelling structure and
estimated by a data-driven method), would reduce to B ′

1(·) in the
exponential distribution family. We next consider two commonly-
used distributions in the exponential family to provide more ex-
plicit explanation.

• When the conditional distribution of y givenU andX is a normal
distribution with the density function defined by

1
√
2πσ 2

exp

−


y − m(U, X)

2
2σ 2


,

we can derive (2.2) by letting φ = σ 2, A(z) = z, B1(z) = z2/2,
B2(z, φ) = B2(z, σ 2) = −

1
2 log(2πσ 2) −

z2

2σ 2 and η(U, X) =

m(U, X). The parameter σ 2 can be treated as a nuisance pa-
rameter, if themain interest is to estimate the conditionalmean
function of y given U and X. Furthermore, if η(U, X) = XTa(U),
(2.3) reduces to m(U, X) = XTa(U), which is the form of the
varying-coefficient model. Hence, we can show that this case
falls into themodelling framework (2.1) by treating σ 2 as a nui-
sance parameter.

• When the conditional distribution of y given U and X is a Pois-
son distribution with the probability mass function defined by

P(y = k | U, X) =
mk(U, X)

k!
exp


−m(U, X)


,

k = 0, 1, 2, . . . ,

we can derive (2.2) by letting A(φ) ≡ 1, B1(z) = ez ,
B2(k; φ) = − log(k!) and η(U, X) = logm(U, X). Further-
more, if η(U, X) = XTa(U), (2.3) reduces to

m(U, X) = exp

η(U, X)


= exp


XTa(U)


.

Thus, we can show that the modelling framework (2.1) is satis-
fied by taking g(z) = ez .

Like in the GLMs, the main interest of this paper lies in the con-
ditional mean of the response variable, and C1(φ1) and C2(y, φ2)
have little to do with the mean component. Hence, without loss of
generality, we assume in this paper that the log conditional density
function of y given U and X is

log f (m(U, X), y) with m(U, X) = g

XTa(U)


. (2.4)

It is worthwhile to compare model (2.4) with the model studied in
Kuruwita et al. (2011):

y = g

XTa(U)


+ ϵ, E(ϵ|X,U) = 0, (2.5)
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