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a b s t r a c t

We examine the asymptotic properties of IV, GMM or MLE to estimate dynamic panel data models when
either N or T or both are large. We show that the Anderson and Hsiao (1981, 1982) simple instrumen-
tal variable estimator (IV) or maximizing the likelihood function with initial value distribution properly
treated (quasi-maximum likelihood estimator) is asymptotically unbiasedwhen eitherN or T or both tend
to infinity. On the other hand, the QMLE mistreating the initial value as fixed is asymptotically unbiased
only ifN is fixed and T is large. If bothN and T are large and N

T → c (c ≠ 0, c < ∞) as T → ∞, it is asymp-

totically biased of order


N
T . We also explore the source of the bias of the Arellano and Bond (1991) type

GMM estimator. We show that it is asymptotically biased of order


T
N if T

N → c (c ≠ 0, c < ∞) as N →

∞ even if we restrict the number of instruments used. Monte Carlo studies show that whether an estima-
tor is asymptotically biased or not has important implications on the actual size of the conventional t-test.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Panel data involves at least two dimensions: a cross-sectional
dimension of size N and a time series dimension of size T . The
multi-dimensional asymptotics are much more complicated than
the traditional one dimension asymptotics. As pointed out by
Phillips and Moon (1999), sequentially applying one dimensional
asymptotics can be misleading when both N and T increase at the
same or arbitrary rate. For instance, in a dynamic panel data model
of the form

yit = γ yi,t−1 + αi + uit , |γ | < 1, i = 1, . . . ,N;

t = 1, . . . , T , (1)

it is well known that the maximum likelihood estimator treating
the individual-specific effects αi and initial values yi0 as fixed
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constants is the covariance estimator (e.g. Hsiao (2003)),

γ̂cv =

N
i=1

T
t=1
(yit − ȳi)(yi,t−1 − ȳi,−1)

N
i=1

T
t=1
(yi,t−1 − ȳi,−1)2

, (2)

where ȳi =
1
T

T
t=1 yit , ȳi,−1 =

1
T

T
t=1 yi,t−1. The estimator γ̂cv is

consistent and
√
T (γ̂cv−γ ) is asymptotically normally distributed

with mean 0 if N is fixed and T is large. However, Hahn and
Kuersteiner (2002) show that the maximum likelihood estimator

is asymptotically biased of order


N
T if both the cross-sectional

dimension N and the time series dimension T go to infinity and
T
N → c (c ≠ 0, c < ∞). On the other hand, the Arellano and Bond
(1991) type generalized method of moments estimators (GMM) is
consistent and asymptotically unbiased if T is fixed andN → ∞. If
T
N → c∗ (c∗

≠ 0, c∗ < ∞) asN → ∞, Alvarez and Arellano (2003)
show that the GMM estimator of a dynamic panel data model is
asymptotically biased of order

√
c∗.
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Two issues arise in the statistical inference for dynamic
panel data models: the presence of individual-specific effects and
the treatment of initial observations. The process of removing
individual-specific effects creates correlations between the lagged
regressors and the transformed errors. Standard approach to purge
the correlations between the regressors and errors of the equa-
tion is to use instrumental variables. However, in the multi-
dimensional case, the way the samplemoments are constructed to
approximate the populationmoments could have important impli-
cations to the asymptotic distribution of the resulting estimators,
for instance, the Anderson and Hsiao (1981, 1982) simple instru-
mental variable estimator (IV) vs. the Arellano–Bond type GMM
estimator. So is the treatment of initial values, for instance, the
(quasi) maximum likelihood estimator (MLE) treating initial val-
ues as fixed constants vs. random variables.

Whether an estimator is asymptotically biased or not has im-
portant implications in statistical inference. In this paper, we wish
to explore the source of asymptotic bias following the joint limit or
sequential limit approach of Phillips andMoon (1999) as well as to
find robust estimators that are asymptotically unbiased indepen-
dent of the way that N or T goes to infinity. We provide the model
and estimators in Section 2. Sections 3–5 discuss the asymptotic
properties of simple IV, GMM, and (quasi) MLE when either N or T
or both go to infinity, respectively. Monte Carlo simulation results
of the properties of different estimatorswith different combination
of N and T are in Section 6. Concluding remarks are in Section 7.
We use →p to denote convergence in probability, →d to denote
convergence in distribution when sample size goes to infinity, and
N, T → ∞ to indicate both N and T go to infinity. Proofs of the
asymptotic results are in the Appendix.

2. Model setup and estimators

For ease of exposition, we consider a dynamic panel datamodel
of the form

yit = αi + γ yi,t−1 + uit , |γ | < 1. (3)

Assumption 1. uit is independent ofαi and is independently, iden-
tically distributed (i.i.d) across i and t withmean0, varianceσ 2, and
finite fourth moment.

Assumption 2. αi are i.i.d. across individuals with E[αi] = 0,
var(αi) = σ 2

α and finite fourth order moments.

Let the observed sample be composed of yit , i = 1, . . . ,N and
t = 0, 1, . . . , T . Stacking the T × 1 observed value of yit as yi =

(yi1, . . . , yiT ) yields

yi = yi,−1γ + ταi + ui, i = 1, . . . ,N, (4)

where yi,−1 = (yi0, . . . , yi,T−1)
′, ui = (ui1, . . . , uiT )

′ and τ is a T×1
vector of ones, τ = (1, . . . , 1)′.

The two popular approaches of estimating the common param-
eter γ are the method of moment approach and the likelihood ap-
proach. The simple IV estimator proposed by Anderson and Hsiao
(1981, 1982) is to first difference (3) to yield1

△ yit =△ yi,t−1γ+ △ uit , i = 1, 2, . . . ,N, t = 2, . . . , T , (5)

where△= (1−L), L denotes the lag operator, Lyit = yi,t−1, then use
either yi,t−2 or△ yi,t−2 as the instrument for themoment condition

E[yi,t−2 △ uit ] = 0 or E[△ yi,t−2 △ uit ] = 0. (6)

1 Note that the △ yi1 equation is undefined since yi,−1 is unobserved.

Then

γ̂IV =

N
i=1

T
t=2

△ yityi,t−2

N
i=1

T
t=2

△ yi,t−1yi,t−2

= γ +

N
i=1

T
t=2

△ uityi,t−2

N
i=1

T
t=2

△ yi,t−1yi,t−2

, (7)

or

γ̂IV =

N
i=1

T
t=3

△ yit △ yi,t−2

N
i=1

T
t=3

△ yi,t−1 △ yi,t−2

= γ +

N
i=1

T
t=3

△ uit △ yi,t−2

N
i=1

T
t=3

△ yi,t−1 △ yi,t−2

. (8)

The Arellano and Bond (1991) (or Arellano and Bover (1995))
GMM approach first eliminates the individual specific effect αi
through a (T − 1) × T deviation operator A that satisfies the con-
dition that Aτ = 0, where τ is a T × 1 vector of ones, then use the
instruments that satisfy the condition that

E[ZiAui] = 0. (9)

For instance, multiplying (4) by the operator

A =


−1 1 . . . 0 0
0 −1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0
0 0 . . . −1 1

 (10)

yields the T − 1 first difference equations

△ yi =△ yi,−1γ+ △ ui, i = 1, . . . ,N, (11)

where △ yi = (△ yi2, . . . ,△ yiT )′, △ yi,−1 = (△ yi1, . . . ,△ yi,T−1)
′.

Then

E[Auiu′

iA
′
] = σ 2


2 −1 . . . 0 0

−1 2 . . . 0 0
...

... . . .
...

...

0 0 . . . 2 −1
0 0 . . . −1 2

 = σ 2Ω0 = Ω. (12)

Arellano and Bover (1995) suggest using an upper triangular
forward orthogonal operator that satisfies Aτ = 0, A′A = Q =

IT −
1
T ττ

′ and AA′
= IT−1, then u∗

i = Aui with

u∗

it = ct


uit −

1
T − t

(ui,t+1 + · · · + uiT )


, t = 1, . . . , T − 1, (13)

where c2t =
T−t

T−t+1 , and E[u∗

i u
∗

i ] = σ 2IT−1.
Let Zi be the block diagonal matrix which satisfies condition (9).

When A takes the form (11), the instrument Zi takes the form Zi =

(qit), where qit = (yi0, . . . , yi,t−2)
′. When A takes the form of for-

ward deviation, the instrument qit takes the form (yi0, . . . , yi,t−1)
′.

The Arellano and Bond (1991) generalized method of moments
(GMM) estimator solves γ by minimizing

1
N

N
i=1

ZiAui

′ 
1
N2

N
i=1

ZiAuiu′

iA
′Z ′

i

−1 
1
N

N
i=1

Z ′

iA
′ui


. (14)

The likelihood approach notes that the initial observation
yi0 is a random variable and considers the joint distribution of
(yi0, yi1, . . . , yiT ), i = 1, . . . ,N (e.g. Anderson and Hsiao (1981,
1982)). Assuming the data generating process is the same for all
yit , then

yi0 = γ yi,−1 + αi + ui0 = (1 + γ + · · ·)αi +

j=0

ui,−jγ
j. (15)
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