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a b s t r a c t

In this paper, we propose a semiparametric procedure called the ‘‘Model AveragingMArginal Regression’’
(MAMAR) that is flexible for forecasting of time series. This procedure considers approximating a
multivariate regression function by an affine combination of one-dimensional marginal regression
functions. The weight parameters involved in the approximation are estimated by least squares on the
basis of the first-stage nonparametric kernel estimates of the marginal regressions. Under some mild
conditions, we have established asymptotic normality for the estimated weights and the regression
function in two cases: Case I considers that the number of the covariates is fixed while Case II allows the
number of the covariates depending on the sample size and diverging. As the observations are assumed
to be stationary and near epoch dependent, the approach developed is applicable to both the estimation
and forecasting issues in time series analysis. Furthermore, the method and result are augmented by
a simulation study and illustrated by an application in forecasting the high frequency volatility of the
FTSE100 index.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Inmany situations of practical interest,we are facedwith a large
number of variables and uncertain functional forms. Linearity is
widely adopted in macroeconometrics where data is limited, but
formany relationships this linearitymay imply absurd conclusions
when covariates are pushed to extreme values. Moreover, in the
regression settings, we may have to choose between a large
number of covariates. In the case of time series, the problemcan get
even worse, since in both estimation and forecasting, all possible
lags of all possible predictor variables may be the candidates and
their influences are of unknown forms. One approach to deal
with this problem is to use model selection tools that choose
the best model according to some traditional criterion from a set
of models. In some cases, such an approach can be very time
consuming. Also, it may be neglecting features of the data that
arrive through themodels which are not selected but are almost as
good as thosewhich are selected. A popularmethod is to usemodel
averaging whereby we fit a number of candidate models and then
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weight them according to some criterion (see, for example Hansen,
2007; Liang et al., 2011). Another approach that is now popular
in statistics is to use some penalization device to force many
weights to be zero. For instance, the least absolute shrinkage and
selection operator (LASSO) proposed by Tibshirani (1996, 1997),
is the penalized least squares estimate with the L1 penalty. The
penalized regression with general Lq penalty leads to a bridge
regression (Frank and Friedman, 1993; Fu, 1998). Fan and Li (2001)
used the smoothly clipped absolute deviation (SCAD) penalty
in penalized likelihood estimation. For recent developments and
surveys on model averaging and variable selection, the reader
is referred to Claeskens and Hjort (2008), Fan and Lv (2008,
2010), Bühlmann and van de Geer (2011) and references therein.
However, most of the literature regarding model averaging and
selection has been concerned with parametric models, which
assume some parametrically linear or nonlinear relationships
among the variables considered. In this paper, we will consider
nonparametric and semiparametric models and will focus on with
model averaging, leaving the penalty model selection issue in the
setting of this paper to our following future work.

Specifically, let (Yt , X
ᵀ
t ) be a stationary time series process,

where Xt = (Xt1, . . . , Xtd)
ᵀ is a d-dimensional random vector and

the superscript ᵀ stands for the transpose of a vector or matrix.
In many applications, we need to consider estimating regression
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function E(Yt |Xt = x)with x = (x1, . . . , xd)ᵀ, which can bewell es-
timated by nonparametric method when the dimension d is small,
but very poorly if the dimension d is high (say larger than 3)
owing to the so-called ‘‘curse of dimensionality’’. Various non-
parametric and semiparametric models, such as additive models,
varying coefficientmodels, partially linearmodels, have been stud-
ied to deal with the curse of dimensionality problem in the liter-
ature (see, for example Fan and Yao, 2003; Li and Racine, 2007;
Teräsvirta et al., 2010). In the time series case, asmentioned above,
the conditioning information may consist of an infinite number
of lags, i.e., d = ∞. Linton and Sancetta (2009) established
consistency of estimators of E(Yt |Yt−1, Yt−2 . . .) under weak con-
ditions without any functional form restrictions beyond some
limited smoothness, but rates of convergence are not available and
practical performance is likely to be poor without further restric-
tions. Instead, it makes sense to use lower dimensional predictors,
but which one? We next consider some explicit semiparametric
models that have been tried to address the issue in nonlinear time
series.

Linton and Mammen (2005) considered the semiparametric
(volatility) regression model

E(Y 2
t |Yt−1, Yt−2 . . .) =

∞
j=1

ψj(θ)m(Yt−j),

where m(·) is an unknown function and the parametric family
{ψj(θ), θ ∈ Θ, j = 1, . . . ,∞} satisfies some regularity conditions.
This model includes the GARCH(1,1) as a special case and also
includes an infinite set of lags. They assumed that {Yt} is stationary
and geometrically mixing and thereby obtained a characterization
of the function m as the solution of a linear integral equation with
intercept of the form m∗

θ (x) =


∞

j=1 ψj(θ)mj(x), where mj(x) =

E(Y 2
t |Yt−j = x) for each j. They proposed an estimation strategy for

the unknown quantities, which requires as input the estimation of
mj(x) for j = 1, 2, . . . , J(T ), where J(T ) = c log T for some c > 0.
They required to bound the estimation error of mj(x) uniformly
over x and over j = 1, 2, . . . , J(T ). However, they provided only a
sketch proof of this result in the case where the process is assumed
to have compact support and to be strong mixing with geometric
decay. A recent paper by Li et al. (2012) provided a more rigorous
and complete proof of this result. Linton and Mammen (2008)
generalized this class of models to allow for exogenous regressors
and more complicated dynamics. See Chen and Ghysels (2010) an
application of these methods to volatility forecasting.

This general approach to modeling is promising but quite
computationally demanding. In addition, the models considered
thus far all have a finite number of unknown functions (for
example, in Linton and Mammen (2005) only one unknown
function was allowed), and so appear to be heavily over identified.
In this paper, we aim at relaxing such restrictive assumptions and
consider a semiparametric model that contains possibly infinitely
manyunknown functions all ofwhich can enter into the prediction.
This may be particularly useful in situations where there is a lot
of nonlinearity and a rich dynamic structure. The most general
version of our model is similar in some ways to the setting
considered in Hansen (2007) except instead of observed covariates
we have nonparametrically estimated ones. We call our method
MAMAR (Model Averaging MArginal Regression). We obtain
consistency and asymptotic normality of our procedure under
general conditions. We further apply our method to volatility
forecasting (where the time series is long and (log) linear models
are predominant) and obtain some satisfactory results.

The rest of the paper is organized as follows. The approxima-
tion of MAMAR is presented in Section 2 and the semiparametric
estimationmethod is presented in Section 3. The asymptotic prop-
erties for the estimators of the optimal weights and nonparametric

estimators for finite covariates case are provided in Section 4.1, and
Section 4.2 gives the theoretical results when the dimension of the
covariates is diverging. Discussions of some related topics are given
in Section 5. Numerical evidence of our methodology is given in
Section 6. Section 7 concludes this paper. All the technical lemmas
and the proofs of the main results are collected in the Appendix.
A supplemental document gives the application of our method to
Australian temperature data and the proofs of some auxiliary re-
sults (see Appendix B).

2. Approximation with MAMAR

We model or approximate the conditional regression function
E(Y |X = x) by an affine combination of lower dimensional re-
gression functions. Let Sℓ denote the set of all subsets of S =

{1, 2, . . . , d} of ℓ components, and this has cardinality Jℓ =
d
ℓ


. For

example, S2 = {(1, 2), . . . , (d − 1, d)} has cardinality d(d − 1)/2.
We model or approximatem(x) = E(Y |X = x) by

mw(x) = w0 +

J
j=1

wjE(Y |X(j) = x(j))

for some weights wj, j = 0, 1, . . . , J , where X(j) = (Xi1 , . . . , Xikj
)ᵀ

is a subset of X and x(j) = (xi1 , . . . , xikj )
ᵀ. In general, X(j) and X(k)

could have different dimensions and of course overlapping mem-
bers. The union of X(j) may exhaust one or more of Sℓ or it may
not. A simple special case that we focus on for much of the paper
is where J = d and X(j) = Xj is just the jth component and the co-
variates are non overlapping. This seems well suited to time series
applications. In practice, one would not wish to take kj to be too
large, so as to avoid the curse of dimensionality.

We could be thinking of this as a family of models within which
there is a true member that corresponds to the true regression
function m(x) or we could be thinking of this as an approximating
or model averaging device. Either way, we are seeking w = (w0,
w1, . . . , wJ)

ᵀ that minimizes

E


Y − w0 −

J
j=1

wjE(Y |X(j))
2
. (2.1)

In general, the minimizing weights may not be unique, but the
minimization problem is a projection onto the space spanned by
the functions {E(Y |X(j)), j = 1, . . . , J} and so there is a unique
solution mw(x). We shall focus on the special case where there
is a unique vector w (which is generally true for the special case
where J = d and X(j) = Xj is just the jth component and the
covariates are non overlapping). In this case, theminimizer to (2.1),
wo = (wo,0, wo,1, . . . , wo,J)

ᵀ, satisfies

wo,0 =


1 −

J
j=1

wo,j


E(Y ), (wo,1, . . . , wo,J)

ᵀ
= A−1a, (2.2)

where A is a J × J matrix whose (i, j)th component is
Cov(E(Y |X(i)), E(Y |X(j))), and a is a J-dimensional vector whose ith
component is Cov(E(Y |X(i)), Y ). If themodel is true or the approxi-
mation is perfect, (2.1) is equal to zero at the optimal weights but it
need not be so. Obviously the conditional component regressions
E(Y |X(j) = xj), j = 1, . . . , J , are unknown but low dimensional, so
they can be well estimated by various nonparametric approaches.
In Section 3, we will first estimate these conditional regression
functions by the Nadaraya–Watson method and then use the least
squares approach to obtain the estimator of wo. We can consider
this approach as a form of model averaging where we are averag-
ing the ‘‘models’’: E(Y |X(j) = x(j)), j = 1, . . . , J , see Hansen (2007).



Download English Version:

https://daneshyari.com/en/article/5095794

Download Persian Version:

https://daneshyari.com/article/5095794

Daneshyari.com

https://daneshyari.com/en/article/5095794
https://daneshyari.com/article/5095794
https://daneshyari.com

