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a b s t r a c t

Estimating gradients is of crucial importance across a broad range of applied economic domains. Here we
consider data-driven bandwidth selection based on the gradient of an unknown regression function. This
is a difficult problem given that direct observation of the value of the gradient is typically not observed.
The procedure developed here delivers bandwidths which behave asymptotically as though they were
selected knowing the true gradient. Simulated examples showcase the finite sample attraction of this
new mechanism and confirm the theoretical predictions.

© 2014 Elsevier B.V. All rights reserved.

1. Overview

The success of nonparametric estimationhinges critically on the
level of smoothing exerted on the unknown surface. Given this im-
portance, a large literature has developed focusing on appropriate
selection of the smoothing parameter(s) of the conditional mean.
However, methods developed for recovering optimal smoothness
levels for the conditional mean are not necessarily the proper sur-
rogates when interest instead hinges on the derivative of the un-
known function. Economic applications which require gradient
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estimation include estimates of heterogeneous individual attitudes
toward risk (Chiapporis et al., 2009) and marginal willingness to
pay within a two-stage hedonic regression (Bajari and Kahn, 2005;
Heckman et al., 2010) to name a few.

The importance of appropriate smoothness selection for
derivatives was illustrated by Wahba and Wang (1990) who
showed in the smoothing spline setting that the ideal smoothing
parameter depends on the derivative of the unknown function.
A small strand of literature has developed focusing attention
on smoothing parameter selection when interest hinges on the
derivative. Within this literature there exist several different
approaches for construction of the optimal bandwidth. To develop
the intuition for existing approaches consider a univariate
nonparametric regression model

yj = g(xj) + uj j = 1, . . . , n. (1)

Rice (1986) introduced a method for selecting a smoothing
parameter optimal for construction of the derivative of g(x). Rice’s
(1986) focus was univariate in nature. He suggested the use
of a differencing operator (though this operator is not formally
defined) and a criterion which was shown to be a nearly unbiased
estimator of themean integrated squared error (MISE) between the
estimated derivative and the oracle. Building on the insight of Rice
(1986), Müller et al. (1987) used Rice’s noise-corrupted suggestion
to select the bandwidth based on the natural extension of least-
squares cross-validation (LSCV). Müller et al. (1987) also formally
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proposed a differencing operator for calculating noise-corrupted
observations of the gradients. Noting that the differencing operator
deployed by Müller et al. (1987) possessed a high variance,
Charnigo et al. (2011) suggested a differencing operator withmore
desirable variance properties as well as a generalized criterion to
be used for selecting the optimal smoothing parameter.

As an alternative to noise-corrupted observations of the desired
gradients, Müller et al. (1987) proposed a simpler approach by
adjusting a bandwidth selected for g(x) to account for the fact
that the bandwidth for the gradient estimate needs to converge
slower. The interesting aspect of the factor method is that, in the
univariate setting, the ratio between the asymptotically optimal
bandwidth for estimation of g(x) and its derivative depends on the
kernel. Using this fact, Müller et al. (1987) recovered an optimal
bandwidth for the derivative eschewing difference quotients. Fan
and Gijbels (1995) used this insight to first construct a plug-in
estimator for the conditional mean and then adjust this bandwidth
to have an optimal bandwidth for the derivative of the conditional
mean.

Beyond the factormethod, Fan andGijbels (1995) also proposed
a two-step bandwidth selector which consists of constructing
empirical measures of the bias and conditional variance of the
local-polynomial estimator. The unknown terms within the bias
and variance are replaced with estimates found using the factor-
method bandwidth. Once thesemeasures are constructed, the final
bandwidth, termed the refined bandwidth, is found byminimizing
MISE. Fan et al. (1996) showed that this bandwidth selection
mechanism has desirable properties both theoretically as well as
in simulated settings.

In a separate approach, Ruppert (1997) developed empirical-
bias bandwidth selection. A key difference from Ruppert’s (1997)
approach is that instead of fitting a local-polynomial to obtain
estimates for the unknown components in the bias expansion for
the gradient, he instead estimates the gradient for several different
bandwidths and then uses least-squares to fit a Taylor expansion
to the estimated unknown components of the bias. A benefit of
this approach over the aforementioned methods is that it requires
estimation of fewer components in practice.

Each of the existing methods leaves something to be desired
in a multivariate setting. The factor method requires bandwidth
selection on the conditional mean followed by calculation of
a scaling factor dependent upon the kernel function (in the
univariate setting) which can be tedious. The calculation of noise-
corrupted derivatives also requires computing the number of
neighboring observations to construct the estimates prior to
minimizing the criterion function. In high dimensional settings
this may not be feasible. Lastly, plug-in approaches, while
having desirable theoretical properties, require the calculation of
numerous unknown quantities, neutering the ability of having a
completely automatic procedure. All plug-in approaches require
estimation of unknown functions and their derivatives prior to
the formal selection of the bandwidth. Moreover, the plug-in
formula for the optimal bandwidths can become quite complicated
in high dimensional settings. The framework laid out here does
not require adjustment, calculation of noise-corrupted derivatives
or unknown quantities related to the underlying data generating
process. The method also does not hinge on a pilot bandwidth
nor a set of estimates being supplied to the criterion function,
streamlining the process.

Our approach beginswith the oracle LSCV setup for the gradient
as in Müller et al. (1987), with a local-linear estimator. We
then show that replacing the oracle gradient with a local-cubic
estimator produces bandwidths which behave asymptotically as
though the oracle was used. The intuition for this result is that
the bias of the local-cubic estimator is of sufficiently smaller order
relative to the local-linear estimator that the only aspect of the

local-cubic estimator which appears in our asymptotic expansion
of the LSCV criterion is the variance of the difference between
these estimators (local-linear and local-cubic). In the limit, the
variance of this difference behaves (up to a constant depending
on the kernel) exactly as the case with the oracle gradient. Thus,
bandwidths selected replacing the oracle gradient with the local-
cubic estimator are asymptotically equivalent to those selected
with the unknown oracle gradient.

The gradient-based cross-validation (GBCV) approach studied
here has several appealing features. First, the computational bur-
den is dramatically decreased given that pilot bandwidths and first
differences are not necessary to make the procedure operational.
Further, the approach readily scales to themultivariate setting and
is firmly entrenched within the data-driven bandwidth selection
arena. Lastly, the method is intuitively appealing as it represents
an easily explained procedure which mimics the traditional LSCV
approach to bandwidth selection, albeit for gradients.

The remainder of the paper is as follows. Section 2 provides
the formal details of our new cross-validation procedure and
the asymptotic justification for our proposed method. Section 3
contains a set of simulations to show the performance of our
bandwidth selectionmethod for estimation of derivative functions
compared with the oracle selection method. Concluding remarks
appear in Section 4.

2. The gradient-based cross-validation method and its asymp-
totic behavior

We consider the problem of using a data-driven method to
select the smoothing parameters for estimation of the derivative of
a function. Here we describe our gradient-based cross-validation
method first in the univariate setting and then for the general
multivariate case.

2.1. The univariate case

To motivate the idea and keep the notational burden to a
minimum, in this sectionwe focus on theunivariate nonparametric
regression model in (1):

yj = g(xj) + uj, j = 1, . . . , n, (2)

where the functional form of g(·) is not specified and the error
term uj satisfies E(uj|xj) = 0. Let β(x) = dg(x)/dx denote the first
order derivative function of g(·) with respect to x. Let β̂LL(x) be the
local-linear estimator of β(x). Ideally, we would like to choose the
smoothing parameter h to minimize the estimation mean squared
error E{[β̂LL(x) − β(x)]2}, or the sample analog of it:

CV (h)
def
=

1
n

n
j=1

[β̂LL(xj) − β(xj)]2M(xj), (3)

where M(·) is a weight function with bounded support that trims
out data near the boundary of the support of x.

Following the same arguments as in Racine and Li (2004) and
Hall et al. (2007), one can show that

CV (h) =


E[β̂LL(x) − β(x)]2M(x)f (x)dx + (s.o.),

where f (x) denotes the density function of x and (s.o.) cap-
tures terms having probability orders smaller than the lead-

ing term

E

β̂LL(x) − β(x)

2
M(x)f (x)dx. Let Bias0


β̂LL(x)


and

Var0

β̂LL(x)


denote the leading bias and leading variance terms

of β̂LL(x). Then the leading term of CV (h) is given by
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