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1. Introduction

Option prices carry information on the risk factors that drive the
underlying asset price process. This information can be exploited
to price other, more complex contingent claims consistently with
the market, to study policy events, and to learn about the risk per-
ception and risk attitude of the representative agent in the market.
Numerous strategies have therefore been suggested for estimating
an option pricing function from randomly observed option price
data in order to extract the relevant information.
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Unlike many other financial data, option price data have the
particular feature that a number of expiry dates across different ex-
ercise prices are traded concurrently. This feature allows the simul-
taneous study of cross-sections of option price data over various
time horizons. Jackwerth and Rubinstein (1996) and Ait-Sahalia
and Lo (1998), for example, compare the state-price density im-
plied from option prices across different expiry dates; in a sim-
ilar vein, Ait-Sahalia and Lo (2000), Jackwerth (2000) and Bliss
and Panigirtzoglou (2004) study the empirical pricing kernel and
implied risk aversion. An assumption that is implicit in many of
these studies is that option prices observed contemporaneously
over multiple time horizons are realizations from a smooth surface
defined across exercise prices and expiry dates.

In this paper, we suggest an estimator for the pricing function
of a European-style call-option that extends across all available ex-
piry dates. In other words, we explicitly take account of two di-
mensions and estimate a call-option price surface. The estimator
is a bivariate tensor product B-spline. It therefore belongs to the
flexible class of series estimators also called semi-nonparametric
estimators; see Gallant (1987). As financial theory requires, the es-
timator obeys shape constraints both across the strike and the ex-
piry dimension to ensure that the resulting option price surface
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is free of arbitrage. Since option data may be sparsely distributed,
which could lead to an ill-posed estimation problem, we also study
aregularized version of the estimator that is well-behaved.

Estimating an option price surface under shape constraints has
rarely been achieved in the literature so far. Two-dimensional esti-
mators, such as those suggested in Ait-Sahalia and Lo (1998), Cont
and da Fonseca (2002), and Fengler et al. (2007), do not accommo-
date no-arbitrage constraints. It is therefore a common practice to
estimate univariate option pricing functions for each expiry date
independently, usually in combination with some interpolation of
the data across the expiry dates.

The literature on flexible modeling techniques designed to es-
timate a univariate option price function and/or its second-order
strike derivative (the state-price density) under shape constraints
is vast. The most important rivals of our estimator, however, are
the fully nonparametric approaches, such as kernel smoothers, and
semi-nonparametric (SNP) regression techniques that are based
on series estimators, such as polynomial regression splines or
other series expansions. Within the nonparametric stream, the pi-
oneering work of Ait-Sahalia and Duarte (2003) suggests a local
linear smoother to estimate the option pricing function and its
strike derivatives. Alternative kernel regression estimators are pro-
posed by Birke and Pilz (2009) and Fan and Mancini (2009). As
regards SNP techniques, a number of polynomial spline methods
have been suggested to date: B-splines in Wang et al. (2004), Lau-
rini (2011), and Corlay (2013); smoothing splines in Yatchew and
Hardle (2006), Monteiro et al. (2008), and Fengler (2009); linear
splines in Hardle and Hlavka (2009). Other SNP-type estimators are
based on the Edgeworth expansion as in Jarrow and Rudd (1982),
on Hermite polynomials as in Madan and Milne (1994) and Jon-
deau and Rockinger (2001), or on approximation methods, such as
the positive convolution approximation as in Bondarenko (2003)
and the nonparametric density mixtures as in Yuan (2009). Finally,
there are flexible estimation approaches that are nonparametric in
nature, but do not properly fit into either strand, such as the neural
network used in Hutchinson et al. (1994), the maximum entropy
method suggested in Stutzer (1996) and the regularized calibra-
tion approach devised by Jackwerth and Rubinstein (1996).!

First approaches to include no-arbitrage constraints for surface
estimation are Benko et al. (2007) and Glaser and Heider (2012).
Both studies build on local polynomials, but they do not analyze
the asymptotic properties of the constrained estimators, nor do
they make an attempt to assess the efficiency benefits that are as-
sociated with implementing no-arbitrage constraints in the time-
to-expiry dimension. Here, we exploit a projection framework for
constrained smoothing devised by Mammen et al. (2001) to prove
the consistency of the estimators and to provide an upper bound
for their rates of convergence. For both estimators, this upper
bound is the optimal rate for regression estimation owed to Stone
(1982).In addition, we show by means of simulations that substan-
tial efficiency gains are to be expected for the estimation of the op-
tion price surface and its derivatives, if one implements calendar
conditions as well as strike constraints.

As noted above, the use of splines to estimate the option pric-
ing function is not new in itself. Moreover, splines have a long
tradition in the statistical literature on smoothing under shape
constraints like positivity, monotonicity, and convexity; see Dele-
croix and Thomas-Agnan (2000) for a survey. Two main avenues for
constraints implementation in spline spaces can be distinguished.
The first exploits the fact that in the considered spaces the shape
constraints can be represented by a finite number of linear inequal-
ity constraints to achieve the desired shape constraint globally;

1 This short overview is far from complete. Most importantly, we omit the fully
parametric models; see Jackwerth (2004) for more references.

see, inter alia, Hildreth (1958), Brunk (1970), Dierckx (1980), Ram-
say (1988), He and Shi (1998), and Meyer (2008). Alternatively, one
seeks only approximately to satisfy the constraints on a finite sub-
set of the domain of the function; see, e.g., Villalobos and Wahba
(1987) and Mammen and Thomas-Agnan (1999). Both strands ex-
ploit specific properties of the spline spaces under consideration
and impose the conditions directly on the unknown regression
function.? For example, to impose convexity in a cubic spline space,
one can utilize the linearity of second-order derivatives, which in
turn leads to conditions on the coefficients of the spline.

Our approach differs. We do not impose the no-arbitrage shape
constraints directly on the unknown regression function, but de-
rive sufficient conditions for no-arbitrage on the control net of the
tensor product (TP) B-spline. The notion of the control net, which
is a set of points with certain averages of the knot sequences as
abscissae and the B-spline coefficients as ordinates, originates in
the literature on computer-aided geometric design; see Prautzsch
et al. (2002). In some senses, the control net spans the shape of the
TP spline surface. As an important property, it is independent of
the degree of the B-spline, thereby allowing B-splines of arbitrary
degree to be used for estimation (within numerical limitations).
This is in contrast to the aforementioned literature that seldom
generalizes beyond the polynomial degree for which it is devel-
oped. Nevertheless, our no-arbitrage conditions on the control net
are linear. Constrained estimation can therefore be carried out by
standard quadratic programming techniques. As we will discuss in
detail in Section 4.3, apart from mechanically forcing a polynomial
call-option price surface to be free of arbitrage, our conditions also
have an economic interpretation. This is because they embed as a
special case the findings of Carr and Madan (2005) and Davis and
Hobson (2007), which apply to the linear call-option price surface.

A natural question is why we should use polynomial regression
splines rather than kernel methods like Ait-Sahalia and Duarte’s
(2003) local polynomial method, and why specifically B-splines.
Concerning the first point, it is difficult to argue that one approach
is uniformly better than the other. The local polynomial method
fits a polynomial in a local neighborhood around a given point and
the estimate is given by a sequence of such fits. Consequently, the
asymptotic behavior of the kernel estimator at a point is very well
understood; see Fan (1992, 1993). For regression splines, one fits
a piecewise polynomial by minimizing a global loss criterion. This
makes it hard to obtain precise asymptotic bias expressions and
could be seen as a disadvantage; see Zhou et al. (1998) and Huang
(2003). On the other hand, regression splines and their derivatives
are exhaustively characterized by the coefficients in a basis expan-
sion. Since the number of basis functions is smaller than the sample
size, one obtains a complete yet parsimonious summary of the un-
derlying data. This feature may be of practical importance. As we
also confirm in our simulations and empirical applications, in most
practical situations, however, the two methods are likely to deliver
similar estimates. This observation has a theoretical justification
since a spline estimator can be shown to be asymptotically equiva-
lent to a certain kernel smoother; see Silverman (1984) and Huang
and Studden (1993).

With regard to the second question, B-splines are attractive
among the polynomial splines, since they are compactly supported
functions that form a basis for a polynomial spline space with
a given degree, smoothness, and domain partition. Moreover, by
means of the de Boor recursion formula, a stable algorithm for eval-
uating splines in B-spline form is available; see Appendix A. Hence,
B-splines behave in a numerically favorable way and are easy to

2 All of the studies cited above, which use polynomial splines to estimate a shape-
constrained option pricing function or state-price density, can be assigned to either
strand.
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