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a b s t r a c t

This paper studies the semiparametric binary response model with interval data investigated by Manski
and Tamer (2002). In this partially identified model, we propose a new estimator based onMT’s modified
maximum score (MMS)method by introducing densityweights to the objective function, which allows us
to develop asymptotic properties of the proposed set estimator for inference. We show that the density-
weighted MMS estimator converges at a nearly cube-root-n rate. We propose an asymptotically valid
inference procedure for the identified region based on subsampling. Monte Carlo experiments provide
supports to our inference procedure.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Interval data is a common feature in empirical research. For ex-
ample, as an explanatory variable, family income might be mea-
sured by a bracket with only upper and lower bounds reported to
researchers. Models with interval data have been systematically
investigated in a seminal paper by Manski and Tamer (2002, MT).
For a semiparametric binary responsemodelwith interval data,MT
propose amodifiedmaximumscore (MMS) set estimator and show
its consistency. The convergence rate and other asymptotic proper-
ties of theMMS estimator, which are necessary for inference, how-
ever are not established. In this paper, we extendMT’smethod and
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propose a density-weightedMMS (set-valued) estimator,which al-
lows us to establish the asymptotic properties. Further, we propose
an asymptotically valid inference procedure for the identified set.
Monte Carlo experiments are used to illustrate the finite sample
performance of the proposed estimator and inference procedure.

When one explanatory variable ν is not observed but other
variables x have been measured precisely, the conditional dis-
tribution P(y|x, ν) is unknown in the population. MT suggest to
characterize the identification region of model parameters based
on P(y|x, ν0, ν1), where ν0 and ν1 are observed lower/upper
bounds of ν in the interval data. Instead of modifying the original
econometricmodel and objects of interests, e.g. replacing P(y|x, ν)
by P(y|x, d)where d is a discrete random variable indicatingwhich
bracket v belongs to, MT’s approach treats the observability of data
as a separate issue of modeling and data generating process. Al-
though the observed bounds are less informative than ν, they still
provide (partial) identification power for the object of interest. MT
characterize the sharp identification region for the model param-
eters and show that their set estimators are consistent.1 Follow-
ing that direction, this paper focuses on the interval data issue in

1 Magnac and Maurin (2008) discuss the identification of the semiparametric
binary response model with interval data when additional instrumental variables
are available.
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a semiparametric binary response model and provides an effective
inference procedure for the partially identified parameters.

The issue of interval data also arises in estimating game the-
oretic models, where some equilibrium variables (e.g., equilib-
rium beliefs) are not observed but we could possibly derive their
estimable upper/lower bounds from equilibrium conditions and
model restrictions. For example, in a 2-by-2 game of incomplete
information with correlated types, Wan and Xu (2012) show that
each player’s equilibrium strategy can be represented as a binary
response model, in which one of the explanatory variables, the
equilibrium belief on the rival’s choice, is unknown to researchers
and bounded by some nonparametrically estimable functions.

In this paper, we extend MT’s MMS method by introducing
densityweights to the objective function for theirMMS estimation.
The weighting does not change the identification region of
parameters of interest, but allows us to obtain a sample objective
function in a U -process form.We further extend (Kim and Pollard,
1990)’s results on the asymptotic properties for maximum score
point estimator to our setting and establish a set of conditions
under which our density-weighted MMS estimator is nearly cube-
root-n consistent.

Moreover, we follow Chernozhukov et al. (2007) and construct
confidence regions for the partially identified set as level sets of
the sample objective function. Abrevaya and Huang (2005) show
that the bootstrap for the asymptotic distribution of maximum
score estimator is inconsistent. Their intuition carries through to
our density-weighted MMS estimator in the partial identification
scenario. Therefore, we propose to estimate the critical values
by subsampling. Applying the results in Nolan and Pollard
(1987, 1988), we show that the inferential statistic converges in
distribution to a non-degenerate random variable, which ensures
the validity of the subsampling procedure. In Section 4, we conduct
Monte Carlo simulations under several choices of subsample sizes.
The finite sample performance provides support to our inference
procedure.

The key in our sample objective function is that it effectively
controls the errors induced by the first stage nonparametric
estimation in indicator functions. As in MT, our sample objective
function also contains the term 1{E(y|x, ν0, ν1) ≥ 1−α} for some
α ∈ (0, 1), which demands a nonparametric plug-in estimator
of the conditional expectation inside the indicator function. By
choosing bandwidths and kernels properly, we show that first
stage estimation errors are asymptotically negligible and will not
distort the asymptotic behavior of the second stage estimator.

Our method is also related to the literature of using U -process
theory to derive asymptotic properties of estimators, e.g. Sherman
(1994b) establishes the asymptotic properties of the U -process
in the analysis of a generalized semiparametric regression
model, which includes Ichimura (1993) and Klein and Spady
(1993) as leading examples. The binary response model that we
consider in this paper is different from Sherman (1994b) in two
aspects. First, the parameters of interest are not point identified.
Second, as a trade-off of the robustness from the conditional
median assumption, our density-weighted MMS estimator has
an ‘‘irregular’’ convergence rate which is slower than root-n. We
do, however, discuss the extension of the density-weighting idea
to a regular case—the parametric regression model with interval
data. We propose a density-weighted modified minimum distance
(MMD) method in a similar way to consistently estimate the
identified set at a nearly parametric rate.

A line of literature on cube-root-n asymptotics has been de-
veloped for a variety of ‘‘irregular’’ estimators (see, e.g., Abrevaya,
2000). For the semiparametric binary response models, traditional
maximum-score-type estimators have been reviewed, e.g. in Kim
and Pollard (1990) and Horowitz (1998). The unusual cube-root-n
convergence comes from the fact that maximum score sample cri-
terion function is essentially a step function of parameters, which

is ‘‘irregular’’ in the sense that it does not allow for a quadratic ex-
pansion.2 Similar intuition carries through to the asymptotic anal-
ysis in our setting where the parameters of interest are partially
identified: we show that the irregular set estimator converges to
the identification region at a rate slightly slower than cube-root-
n.3 Blevins (2012) also studies the asymptotic problems of irregu-
lar set estimators, which is related to the present paper, but has a
different focus.

The rest of the paper is organized as follows. Section 2 reviews
the semiparametric response model with interval data and the
MMS estimator proposed by MT. In Section 3, we introduce the
density-weighted MMS estimator and provide the conditions for
valid inference. Section 4 reports Monte Carlo experiment results.
We discuss some possible extensions in Section 5 and conclude the
paper in Section 6.

2. Semiparametric binary response model with interval data

Consider the following semiparametric binary response model
studied in MT,
y = 1


x′β + δν + ϵ > 0


,

where x ∈ Rd, ν ∈ R and ϵ ∈ R. (y, x′, ν0, ν1) are observed by
researchers with ν0 ≤ ν ≤ ν1. β ∈ B ⊂ Rd and δ ∈ R are
parameters of interest. The following assumption is made in MT,
and throughout the present paper as well.

Assumption 2.1. Let Semiparametric Binary Regression (SBR) as-
sumptions hold.
SBR-1 For a specified α ∈ (0, 1), qα (ϵ|x, ν) = 0. P (ϵ ≤ 0|x, ν) =

α.
SBR-2 P (ϵ|x, ν, ν0, ν1) = P (ϵ|x, ν).
SBR-3 δ > 0.

Assumption SBR-1 is the α-quantile-independence condition
suggested by Manski (1975, 1985); SBR-2 asserts that observation
of [ν0, ν1] would not provide additional information for the dis-
tribution of ϵ if we know ν and x. SRB-2 holds if the bracket for
each ν is generated at random, i.e., given x and ν, which bracket
(with ν0 ≤ ν ≤ ν1) to be reported has to be independent with
ϵ (see Aucejo et al., 2013). In practice, if the set of brackets are pre-
determined for reporting ν and forms a partition on the real line,
then the conditional distribution of ν0 and ν1 given ν is degenerate
and SBR-2 holds trivially. Assumption SBR-3 is strong but could be
substituted with weaker model restrictions that identify the sign
of δ. In addition, positive δ constitutes a normalization.

As pointed out by MT, the threshold-crossing condition is
invariant to the scale of the parameters. Hence, we set δ = 1
throughout as a scale normalization. Further, MT characterize the
sharp identification region of β by

B∗
= {b ∈ Rk

: P[T (b)] = 0}, (1)
where T (b) = {(x, ν0, ν1) : (xb + ν1 ≤ 0 < xβ + ν0) ∪ (xβ + ν1
≤ 0 < xb + ν0)}.

MT propose a consistent set estimator for B∗: the modified
maximum score (MMS) estimator. Let z = (x′, ν0, ν1)

′ and P (z) =

P(y = 1|z). Let further λ(z) = 1 [P(z) > 1 − α] and sgn(·) be the
conventional sign function.4

2 Under additional smoothness assumptions on the error term’s density,
Horowitz (1992) propose a smoothedMSE,which has a limiting normal distribution
and a rate of convergence that is at least n−2/5 and can be arbitrarily close to n−1/2 .
3 On the other hand, a smoothed sample criterion function does not necessarily

guarantee the corresponding estimator will converge at a parametric rate: in a
simple setting of binary response models with a special regressor, Khan and Tamer
(2010) show that the identification-at-infinity of parameters could also result in a
convergence rate slower than the parametric rate. Chen et al. (2013) extend such a
result.
4 We adopt the convention sgn(0) = −1.
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