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a b s t r a c t

Frontier estimation appears in productivity analysis. Firm’s performance is measured by the distance
between its output and an optimal production frontier. Frontier estimation becomes difficult if outputs
are measured with noise and most approaches rely on restrictive parametric assumptions. This paper
contributes to nonparametric approaches, with unknown frontier and unknown variance of a normally
distributed error. We propose a nonparametric method identifying and estimating both quantities
simultaneously. Consistency and rate of convergence of our estimators are established, and simulations
verify the performance of the estimators for small samples. We illustrate our method with data on
American electricity companies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Frontier estimation problems arise naturally in economics,
in the context of productivity analysis. When analyzing the
productivity of firms, one may compare how the firms transform
their inputs W (labor, energy, capital, etc.) into an output X (the
quantity of goods produced). In this context, the set of technically
possible outputs is determined by a production frontier τ(W )
which is the geometric locus of optimal production plans. The
economic efficiency of the firm operating at the level (W0, X0) is
then measured in terms of the distance between its production
level X0 and the boundary level τ(W0).

Efficiency and productivity analysis have been applied in many
different fields of economic activity, including industry, hospitals,
transportation, schools, banks, public services, etc. Frontiermodels
were even introduced to measure the performance of portfolios
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in finance, in the line with the seminal work of Markovitz (1959)
using Capital Assets Pricing Models (CAPM), where W measures
the risk of a portfolio and X its average return. Gattoufi et al. (2004)
cite more than 1800 published articles on efficiency analysis,
appearing in more than 400 journals in business and economics.

In deterministic frontier models it is assumed that τ(W ) corre-
sponds to the boundary of the support of X . For a random sample
(Wi, Xi) one then has P(Xi ≤ τ(Wi)) = 1. Most nonparametric ap-
proaches are then based on the idea of enveloping the data. Farrell
(1957) introduced Data Envelopment Analysis (DEA), based on ei-
ther the conical hull or the convex hull of the data. Deprins et al.
(1984) extended the idea to non convex sets and suggested the Free
Disposal Hull (FDH) estimator, equal to the smallest free disposal
set containing all the data. Statistical properties of these estima-
tors are well known (see Banker, 1993; Korostelev et al., 1995a,b;
Kneip et al., 1998; Gijbels et al., 1999; Park et al., 2000; Jeong, 2004;
Jeong and Park, 2006; Kneip et al., 2008; Park et al., 2010; Daouia
et al., 2010). However all these methods rely on the unrealistic as-
sumption of deterministic frontier models that the outputs Xi are
observed without noise. In the presence of noise, the envelopment
methods will be biased and not consistent.

More realistic stochastic frontier models assume that observed
outputs Yi represent underlying, ‘‘true’’ outputs Xi contaminated
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with some additional noise. In most of the stochastic frontier
approaches developed in the econometric literature, a fully
parametric model is assumed. For instance, in the pioneering work
of Aigner et al. (1977) and Meeusen and van den Broek (1977), we
have an iid sample of (Wi, Yi) of inputs and outputs generated by
the basic model

Yi = τ(Wi) exp(−Ui) exp(Vi), (1)

where τ(Wi) is a parametric production function (e.g. a
Cobb–Douglas) quantifying the optimal attainable output for a
given input level Wi. Moreover, Ui > 0 is a positive random
variable having a jump at the origin that represents the ineffi-
ciency; in parametric models, Ui has a known density depending
on one or two unknown parameters (often a half normal, trun-
cated normal or exponential). So the latent unobserved output is
Xi = τ(Wi) exp(−Ui). The noise term is Zi = exp(Vi), where Vi ∈ R
has usually a normal density with mean zero and unknown vari-
ance. Finally, Ui is supposed to be conditionally independent of Vi,
given Wi. These approaches have been very popular in the econo-
metric literature and estimation is based on standard paramet-
ric techniques, like maximum likelihood or modified least squares
methods (see Greene, 2008, for a survey).

However, these approaches rely on very restrictive assumptions
on both the frontier function and on the stochastic part of the
model. A crucial issue is the specification of the distribution of
the inefficiencies Ui. While some central limit arguments can be
advocated for the Gaussian noise, there does usually not exist any
information justifying particular distributional assumptions on Ui.

Recent attempts have been made to attack the problem from
a non- or semi-parametric point of view. Using nonparametric
techniques it is possible to avoid any parametric assumptions on
the structure of τ(Wi). Important contributions in this direction are
Fan et al. (1996) and Kumbhakar et al. (2007). They, however, still
rely on parametric specifications for the density of Ui.

Even when assuming Gaussian noise, dropping parametric
assumptions on the structure of the distribution of Ui greatly
complicates the problem and enforces to develop completely new
methods. Estimation of the boundary τ(W ) of X then necessitates
to solve a complicated, non-standard deconvolution problem.

In order to concentrate on the core of the problem, we will
start by analyzing a slightly simplified version of the generalmodel
which assumes that the boundary τ(·) is constant, i.e. τ(W ) ≡

τ for all W and some fixed, but unknown τ > 0. With X =

τ exp(−U) and Z = exp(V ) the general setup then reduces to the
following situation: There are i.i.d. observations Y1, . . . , Yn with a
density g on R+, generated by the model

Yi = Xi · Zi, (2)

where Xi is a latent unobserved true signal having a density f on
the support [0, τ ], with f (τ ) > 0 for some unknown τ > 0, and
Zi is the noise. We assume that Zi is independent of Xi and is log-
normally distributed. More precisely, log Zi ∼ N(0, σ 2), where
σ 2 > 0 is an unknown variance. The problem then consists in
estimating τ as well as σ , when only the Yi’s are observable.

Our estimation procedure for the simplified model (2) is based
on the maximization of a penalized profile likelihood. Based
on local constant or local linear approximation techniques this
approach is then generalized to define estimators for the stochastic
frontier model (1). Precise descriptions of estimators and a
corresponding asymptotic theory are given in Sections 2 and 3.

Our basic approach is similar to the setup described in Hall
and Simar (2002) and Simar (2007). They propose a nonparametric
approach where the noise has an unspecified symmetric density
with variance σ 2 converging to zero when the sample size
increases. Different from their approach we avoid the restriction
of having the noise converging to zero when the sample size

increases.Wewant to note, however, that a lognormal distribution
of Z is crucial to ensure identifiability in our context, while Hall and
Simar (2002) rely on unspecified error distributions.

As already mentioned above, (2) with unknown τ and σ
leads to a non-standard deconvolution problem. The novelty of
our approach consists in the simultaneous estimation of both
parameters and the derivation of resulting convergence rates.

The problem of estimating an unknown boundary τ when the
error varianceσ 2 is known, has already been studied in a number of
papers, see e.g. Goldenshluger and Tsybakov (2004), Delaigle and
Gijbels (2006), Meister (2006a), or Aarts et al. (2007). Under (2) the
value of σ 2 is explicitly required in order to construct either one of
these estimators.

Another related problem is the deconvolution problem with
unknown error variance, but without assuming the existence of a
finite boundary. Butucea andMatias (2005),Meister (2006b, 2007),
Butucea et al. (2008), as well as Schwarz and Van Bellegem (2010)
proposed estimators under this model, and they proved (among
others) the identifiability and consistency of their estimators.

The paper is organized as follows. Sections 2 and 3 describe our
estimation procedure and corresponding asymptotic properties,
respectively. Numerical illustrations are presented in Section 4.
We first begin with a simulation study to verify the performance
of the estimators in (2) for small samples. We then compare
the performance of our estimator of a production frontier with
the procedure proposed in Hall and Simar (2002). We also apply
our procedure to analyze the production outputs of American
electricity utility companies. Proofs of some core results can be
found in Appendix A.

2. Estimation procedure

2.1. Estimation under the simplified model

Recall that under model (2), the latent variable X is defined on
[0, τ ] and its density f satisfies f (τ ) > 0. In addition, let g be the
density of the observed variable Y . Also note that the model can
equivalently be written as Y ∗

= X∗
+ Z∗, where Y ∗

= log Y ,
X∗

= log X and where Z∗
∼ N(0, σ 2) is independent of X∗, and

σ 2 is unknown.
Whenever confusion is possible, we will add a subindex 0 to

indicate the true quantities (e.g. f0, g0, τ0, . . . stand for the true
densities f and g and the true value of τ ). Let φ(z) denote the
standard normal density, and recall that the density ρσ of a log-
normal random variable with parameters µ = 0, σ 2 > 0 is given
by ρσ (z) =

1
σ z φ(

log z
σ

) for z > 0. For all y > 0 we can then write

g0(y) =

 τ0
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dt, (3)

where

h0(t) = τ0f0(tτ0) for 0 ≤ t ≤ 1.

For an arbitrary density h defined on [0, 1] and for arbitrary
values of τ > 0 and σ > 0, define

gh,τ ,σ (y) =
1
σy

 1

0
h(t)φ


1
σ

log
y
tτ


dt.

Obviously, g0 ≡ gh0,τ0,σ0 .
Since our model does not suppose the variance of the error to

be known, it is important and even crucial to verify whether our
model is identifiable. The answer is given in the next theorem.
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