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a b s t r a c t

We address the problem of estimating generalized linear models when some covariate values aremissing
but imputations are available to fill-in the missing values. This situation generates a bias-precision trade-
off in the estimation of the model parameters. Extending the generalized missing-indicator method
proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of
model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also
propose a blockmodel averaging strategy that incorporates information on themissing-data patterns and
is computationally simple. An empirical application illustrates our approach.
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1. Introduction

In this paper we address the problem of estimating general-
ized linear models (GLMs) when the outcome of interest is always
observed, some covariate values are missing, and imputations are
available to fill-in the missing values. This situation is becoming
quite common, as public-use data files increasingly include impu-
tations of key variables affected by item nonresponse. The focus of
this paper is on how to make use of the available imputations, not
on methods to impute the missing values.

Two standard approaches to the problem of missing covari-
ate values are complete-case analysis and the fill-in approach.
The first drops all the observations with missing values ignoring
the imputations altogether, while the second fills-in the missing
values with the available imputations without distinguishing be-
tween observed and imputed values. Under certain conditions on
themissing-datamechanism and the imputationmodel, the choice
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between these two approaches generates a trade-off between
bias and precision in the estimation of the parameters of interest.
When the complete cases are few the loss of precisionmay be sub-
stantial, but just filling-in the missing values with the imputations
may lead to bias when the imputation model is either incorrectly
specified or uncongenial in the sense of Meng (1994), that is, the
imputation model is more restrictive than the model used to ana-
lyze the filled-in data. Validity of the assumptions behind the fill-in
approach is often taken for granted, so this bias-precision trade-off
is usually ignored. However, when imputations are provided by
an external source, the congeniality assumption may fail because
the two models are based on different parametric assumptions or
they condition on different sets of covariates. The estimates from
the fill-in approachmay therefore be inconsistent, especially in the
case of nonlinear estimators.

Using the generalized missing-indicator approach originally
proposed for linear regression byDardanoni et al. (2011), we trans-
form the bias-precision trade-off between complete-case analysis
and the fill-in approach into a problem of model uncertainty re-
garding which covariates should be dropped from an augmented
GLM, or ‘grand model’, which includes two subsets of regressors:
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the focus covariates, corresponding to the observed or imputed
covariates, and a set of auxiliary regressors consisting of binary
indicators for the various missing-data patterns and their inter-
actions with the focus regressors. Our formulation of the bias-
precision trade-off in terms of model uncertainty exploits the fact
that complete-case analysis and the fill-in approach correspond
to two extreme specifications of the grand model. Complete-case
analysis corresponds to using an unrestricted specification, while
the fill-in approach corresponds to using a restricted specification
that includes only the focus regressors. Instead of focusing on these
extreme specifications of the grand model, we consider Bayesian
averaging of classical maximum likelihood estimators (BAML) that
takes into account all the intermediate specifications obtained by
dropping from the grand model alternative subsets of auxiliary re-
gressors associated with the various missing-data patterns. In this
waywe avoid restricting attention to the complete cases but, at the
same time, we exploit the available imputations in a sensible way
by allowing the imputationmodel to be incorrectly specified or un-
congenial with the GLM of interest. The extreme choices of using
either the complete-case or the fill-in approach are still available,
but neither is likely to emerge as the best one since all the interme-
diatemodels in the expandedmodel space carry information about
the parameters of interest.

In addition to extending the generalized missing-indicator
method to the wide class of GLMs, we depart from Dardanoni et al.
(2011) in three important respects. First, we propose a new block
model averaging strategy that incorporates the information on the
available patterns of missing data while being computationally
simple. Second, we allow the observed outcome to bemultivariate,
thus covering the case of seemingly unrelated regression equations
models and ordered, multinomial or conditional logit and probit
models. Third, we investigate the robustness of our block-BAML
procedure to the choice of priors by considering two families of
prior distributions: the calibrated information criteria priors intro-
duced by Clyde (2000), which use approximations based on the
Laplace method for integrals to calibrate posterior model proba-
bilities to classical model section criteria, and the conjugate priors
for GLMs introduced by Chen and Ibrahim (2003), which allow to
directly estimate posterior model probabilities using a computa-
tionally simple Markov chain Monte Carlo algorithm.

In our empirical illustrationwe analyze how cognitive function-
ing varies with physical health and socio-economic status using
data from the fourth wave of the Survey on Health, Aging and Re-
tirement in Europe (SHARE). Like for other household surveys, sen-
sitive variables such as household income, household net worth,
and other objective health measures are affected by substantial
item nonresponse. Using the imputations contained in the public-
use SHARE data, we investigate the bias-precision trade-off arising
fromdifferent approaches for dealingwith the problem of imputed
covariates inGLMs. Further,we employmultiple imputationmeth-
ods to account for the additional sampling uncertainty due to the
imputation of missing covariate values.

The remainder of the paper is organized as follows. Section 2
presents our statistical framework. Section 3 discusses complete-
case analysis and the fill-in approach. Section 4 describes the gen-
eralized missing-indicator method. Section 5 discusses our BAML
procedure. Section 6 extends our results to the case of multivari-
ate outcomes. Section 7 presents an empirical application. Finally,
Section 8 offers some conclusions.

2. Statistical framework

We represent the available set ofN observations on an outcome
of interest as a realization of a random vector Y = (Y1, . . . , YN),
whose components are independently distributed random vari-

ables with mean µn and finite nonzero variance σ 2
n .

1 We assume
that the distribution of any component Yn of Y belongs to the one-
parameter linear exponential family with density function of the
form

f (y; γn) = exp [γn y − b(γn) + c(y)] , (1)

where γn is a scalar parameter called the canonical parameter, b(·)
is a known, strictly convex and twice differentiable function, and
c(·) is a known function.2 By the properties of the linear exponen-
tial family, the mean and variance of Yn are equal to µn = b′(γn)
and σ 2

n = b′′(γn) respectively (McCullagh and Nelder, 1989). Dif-
ferent choices of the functions b(·) and c(·) result in different distri-
butions within this family. For example, letting b(γn) = γ 2

n /2 and
c(y) = −1/2[y2 + ln(2π)] gives the density of a normal distribu-
tionwithmean γn and unit variance, while letting b(γn) = exp(γn)
and c(y) = − ln(y!) gives the density of a Poisson distributionwith
intensity parameter equal to exp(γn).

In a GLM the dependence of Yn on a vector of covariates Xn (as-
sumed to include a constant term) is modeled by assuming that
there exists a continuously differentiable and invertible function
h(·), known as the inverse link, such that the mean of Yn is equal
to µn = h(X⊤

n β) for a unique value of the K -dimensional parame-
ter vector β . The linear combination ηn = X⊤

n β is called the linear
predictor associated with the nth observation. Collecting together
the linear predictors associatedwith the sample observations gives
the N-dimensional vector η = Xβ , where X is the N × K matrix of
observations on the covariates with nth row equal to X⊤

n .
In the absence of missing data, the classical approach to esti-

mating β is maximum likelihood (ML). The sample log-likelihood
for the missing-free data is

L(β) = c +

N
n=1

[γn(β) Yn − b (γn(β))] ,

where γn(β) is the unique root of the equation b′(γ ) = h(X⊤
n β)

and the missing-free data ML estimatorβ of β is obtained by solv-
ing the system of K likelihood equations

0 = L′(β) =

N
n=1

v(X⊤

n β)

Yn − h(X⊤

n β)

Xn,

with v(X⊤
n β) = h′(X⊤

n β)/b′′(γn(β)). Provided the assumed
model is correctly specified, and the mild regularity conditions in
Fahrmeir and Kaufmann (1985) hold, β is unique, consistent, and
asymptotically normal with asymptotic variance equal to the in-
verse of the Fisher information matrix. The fact that β enters the
likelihood equations only through the linear predictor ηn = X⊤

n β is
the key property of GLMs that drives ourmain result in Theorem 1.
If b′(·) = h(·) (the ‘‘canonical link’’ case), then γn(β) = X⊤

n β and
the likelihood equations simplify considerably because v(X⊤

n β) =

1 for all n. An example is the Gaussian model with identity link
h(X⊤

n β) = X⊤
n β , where the likelihood equations reduce to the fa-

miliar normal equations for OLS.
In this paper we depart from the standard GLM setup by al-

lowing some covariate values to be missing. We also assume that
imputations, as provided by an external source (typically the pro-
ducers of the dataset), are available to fill-in the missing covariate
values. Since the constant term is always observed, the number of
possiblemissing-data patterns is equal to 2K−1. Not all the possible

1 Vectors are always column vectors, and boldface denotes vector and matrices
of sample observations or of functions of sample observations.
2 In the original formulation of Nelder andWedderburn (1972), the density in Eq.

(1) includes an additional dispersion parameter which, without loss of generality,
we set equal to one.
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