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a b s t r a c t

Manski (1975, 1985) proposed the maximum score estimator for the binary choice model under a weak
conditional median restriction that converges at the rate of n−1/3 and the standardized version has a
nonstandard distribution. By imposing additional smoothness conditions, Horowitz (1992) proposed a
smoothed maximum score estimator that often has large finite sample biases and is quite sensitive to
the choice of smoothing parameter. In this paper we propose a novel framework that leads to a local
polynomial smoothing based estimator. Our estimator possesses finite sample and asymptotic properties
typically associated with the local polynomial regression. In addition, our local polynomial regression-
based estimator can be extended to the panel data setting. Simulation results suggest that our estimators
may offer significant improvement over the smoothed maximum score estimators.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In two seminal papersManski (1975, 1985)1 proposed themax-
imum score estimator for the binary choice model under a weak
conditional median restriction, which allows for very general het-
eroscedasticity of unknown form.Manski’swork has since received
a great deal of attention in the econometrics literature, and still
remains a focus of active research. Manski (1975, 1985) estab-
lished consistency of the maximum score estimator. Chamber-
lain (1986), however, showed that no

√
n-consistent estimator

exists under Manski’s assumption. In a refinement of Chamber-
lain’s calculation, Pollard (1993) indeed showed that n−1/3 is the
best achievable rate under amild strengthening of Manski’s condi-
tion. Cavanagh (1987) and Kim and Pollard (1990) established that
the maximum score estimator converges at the rate of n−1/3 and
the standardized version has a nonstandard distribution, which
makes statistical inference difficult. Abrevaya and Huang (2005)
further established the inconsistency of the bootstrap, complicat-
ing possible inference procedures using the maximum score esti-
mator. Delgado et al. (2001) considered subsampling inference for
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(H. Zhang).
1 Manski (1987) proposed a panel version of the maximum score estimator for

the binary choice panel data model with fixed effects.

the maximum score estimator and other n−1/3-consistent estima-
tors. Jun et al. (2014) proposed a classical (non-Bayesian) Laplace
type of estimator alternative for a large class of n−1/3-consistent
estimators, including the maximum score estimator; and they fur-
ther suggested a uniform inference procedure. In a context of
structural estimation Fox (2008) extended the maximum score es-
timator to the multinomial model.

To remedy the above-mentioned drawbacks associated with
maximum score estimator, in a highly influential paper, Horowitz
(1992) proposed the smoothed maximum score estimator by
smoothing Manski’s (1975, 1985) score function under appropri-
ate smoothness conditions. Horowitz (1992, 1993) showed that his
estimator converges at least at the rate of n−2/5 and can be ar-
bitrarily close to n−1/2 under these extra smoothness conditions.
Furthermore, the smoothed maximum score estimator, after stan-
dardization, is shown to be asymptotically normal, which facili-
tates statistical inference based on standard first order asymptotic
theory. In addition, Horowitz (2002) established the validity of the
bootstrap for the smoothed maximum score estimator, attaining
asymptotic refinements. Pollard (1993) provided complimentary
results to Horowitz (1992).

While Horowitz’s (1992) smoothed maximum score estimator
represents a significant improvement over the maximum score
estimator under these extra smoothness conditions,2 it also has its

2 It is worth pointing out that the faster rate of convergence of Horowitz’s
estimator as well as the estimator we propose in this paper relies on these
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own serious shortcomings. As noted by Horowitz (1992), among
others (e.g., Blevins and Khan (2013), Khan (2013), Iglesias (2010),
Kotlyarova and Zinde-Walsh (2010), etc.), the smoothedmaximum
score estimator is typically associated with large finite sample bias
and is quite sensitive to the choice of smoothing parameter, which
makes it difficult to implement in practice. Till now, these issues
have largely remained unresolved.

In this paper we develop a novel framework to systemati-
cally address the aforementioned drawbacks associated with the
smoothed maximum score estimator. To this end, it is first useful
to recognize that these problems are commonly associated with
nonparametric kernel density and regression estimators. Indeed,
as pointed out by Horowitz (1992), there is an intimate link be-
tween the smoothed maximum score estimator and the kernel
nonparametric density and regression estimation. In the nonpara-
metric estimation literature local linear and local polynomial re-
gression estimators (e.g., Fan and Gilbels (1996)) are likely to have
favorable finite sample and asymptotic properties in comparison
with the kernel regression estimator when local linear or local
polynomial function provides better approximation than the local
constant function.3 The local linear and polynomial regression
techniques have been widely used in the semiparametric estima-
tion literature (e.g., Fan and Gilbels (1996), Fan et al. (1995), Chen
(1999), Chen and Khan (2000), Hahn et al. (2001), Heckman et al.
(1997, 1998), Linton (1995, 2002), Powell and Khan (2001), etc.).
In this paper we propose a novel framework which leads naturally
to a local polynomial smoothing based estimator. As expected, our
estimator is shown to possess the properties typically associated
with the local polynomial regression estimator.

Along with the development of maximum score estimation for
the cross-sectional binary choice model, there has been parallel
development of distribution free estimation of the binary choice
panel data model with fixed effects. Extending his maximum score
estimator for the cross-sectional case, Manski (1987) proposed
the maximum score estimator for the binary panel data model.
Following Horowitz (1992), Charlier et al. (1995) and Kyriazidou
(1997) proposed the smoothed maximum score estimator for the
panel data case, and also in the same spirit, Abrevaya (2000)
proposed smoothed rank estimators for a generalized fixed-effect
regression model, including the maximum score and smoothed
maximum score estimators as special cases. Drawbacks associated
with smoothed maximum score estimators, such as large finite
sample biases and sensitivity to the smoothing parameter, still
plague the panel data version of the smoothed maximum score
estimator, and even seem to be more serious than in the cross-
sectional case. We show that our local polynomial based estimator
can be extended to the panel data model, and the new estimator is
shown to have properties similar to its cross-sectional counterpart.

The next section presents the identification result based on a
local conditional moment condition and further proposes a local
polynomial-based smoothed maximum score estimator using this
identification result. Section 3 contains the asymptotic properties
of the estimator. Results from Monte Carlo experiments are
presented in Section 4. Section 5 concludes. The proofs of theorems
are in Appendix A. Appendix B contains the extensions to the
binary quantile regression model and the binary panel data model
with fixed effects.

smoothness conditions. Indeed, as pointed out by Pollard (1993) that when the
smoothness assumptions are violated Horowitz’s estimator is dominated by a bias
term.
3 Note that the local constant regression is likely to perform better when the

regression function is relatively constant. In our current context, however, the
relevant regression functions, such as the conditional probability function, are
not likely to be slow-changing in the region of interest, thus would be better
approximated by the local linear or local polynomial regression function.

2. Smoothedmaximumscore estimationwith local polynomial
smoothing

We consider the model

Y = 1

X ′β + ε > 0


(2.1)

where Y is the binary dependent variable, X is a d × 1 vector of
independent variables, β is a corresponding vector of unknown
coefficients, ε is the unobservable error term. Let β1 denote the
coefficient of the first component of X , X1, which is assumed
to be continuously distributed conditional on X̃ , the remaining
components of X . Following Horowitz (1992), we set |β1| = 1 for
scale normalization.

Under the assumption that the conditional median of ε given
X is zero, i.e, med(ε|x) = 0, Manski (1975, 1985) proposed the
maximum score estimator for β , any value b that solves the
problem

max
b̃

S∗

M(b) =

n
i=1

(Yi − 0.5) 1

X ′

i b > 0


where {Xi, Yi}
n
i=1 is a random of observations generated from

Model (2.1). Cavanagh (1987) and Kim and Pollard (1990) estab-
lished that the maximum score estimator converges at the rate of
n−1/3 and the standardized version has a nonstandard distribution.
Recognizing that the slow rate of convergence and complicated
nature of the limiting distribution of the maximum score estima-
tor are largely due to the discontinuity of the objective function
S∗

M , with strengthening of smoothness conditions Horowitz (1992)
proposed the smoothedmaximum score estimator by replacing S∗

M
with a smoothed version. Specifically, Horowitz’s (1992) estimator
is defined as any solution to the problem

max
b

SH(b) =

n
i=1

(Yi − 0.5) K

X ′

i b
h


where K is a smoothed indicator function, usually obtained by in-
tegrating a kernel density function, and h is a bandwidth param-
eter converging to zero as the sample size increases. While the
smoothed maximum score estimator, which converges at a faster
rate and is asymptotically normal under the extra smoothness con-
ditions, represents a significant improvement over the maximum
score estimator, it also has its own serious shortcomings. It is typ-
ically associated with large finite sample biases and is quite sensi-
tive to the choice of smoothing parameter, whichmakes it difficult
to implement in practice. To better understand the finite sample
and asymptotic properties of the smoothed maximum score esti-
mator, it is instructive to examine its close link to nonparametric
kernel regression. Note that smoothed maximum score estimator
β̂SMC satisfies the estimating equations
n

i=1

(Yi − 0.5)
1
h
k

X ′

i b
h


X̃i = 0

which can be formulated equivalently as

En

(Y − 0.5) X̃ |X ′b = 0


= 0 (2.2)

where

En

(Y − 0.5) X̃ |X ′b = 0


=

n
i=1

(Yi − 0.5) 1
hk


X ′
i b
h


X̃i

n
i=1

1
hk


X ′
i b
h


is the common nonparametric kernel regression estimator for
E

(Y − 0.5) X̃ |X ′b = 0


; namely, the first order conditions cor-

responding to the smoothed maximum score estimator can be
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