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a b s t r a c t

A new Bayesian test statistic is proposed to test a point null hypothesis based on a quadratic loss.
The proposed test statistic may be regarded as the Bayesian version of the Lagrange multiplier test.
Its asymptotic distribution is obtained based on a set of regular conditions and follows a chi-squared
distribution when the null hypothesis is correct. The new statistic has several important advantages that
make it appealing in practical applications. First, it is well-defined under improper prior distributions.
Second, it avoids Jeffrey–Lindley’s paradox. Third, it always takes a non-negative value and is relatively
easy to compute, even for models with latent variables. Fourth, its numerical standard error is relatively
easy to obtain. Finally, it is asymptotically pivotal and its threshold values can be obtained from the chi-
squared distribution. The method is illustrated using some real examples in economics and finance.
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1. Introduction

This paper is concerned with statistical testing of a point null
hypothesis after a Bayesian Markov chain Monte Carlo (MCMC)
method has been used to estimate the models. Testing for a point
null hypothesis is prevalent in economics although its impor-
tance is debatable. In the meantime, Bayesian MCMC methods
have foundmore andmore applications in economics because they
make it possible to fit increasingly complex models, including la-
tent variable models (Shephard, 2005), dynamic discrete choice
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models (Imai et al., 2009) and dynamic general equilibriummodels
(DSGE) (An and Schorfheide, 2007).

In the Bayesian paradigm, the Bayes factor (BF) is the gold
standard for Bayesian model comparison and Bayesian hypothesis
testing (Kass and Raftery, 1995; Geweke, 2007). Unfortunately, the
BF is not problem-free. First, the BF is sensitive to the prior and
subject to Jeffreys–Lindley’s paradox; see for example, Kass and
Raftery (1995), Poirier (1995) and Robert (1993, 2001). Second, the
calculation of the BF for hypothesis testing generally requires the
evaluation of marginal likelihood which is a marginalization over
the unknown quantities. In many cases, the evaluation of marginal
likelihood is difficult. Not surprisingly, alternative strategies have
been proposed to test a point null hypothesis in the Bayesian
literature. These methods can be classified into two classes.

In the first class, refinements are made to the BF to overcome
the theoretical and computational difficulties. For example, to re-
duce the influence of the prior on the BF, onemay split the data into
two parts, a training sample and a sample for statistical analysis.
The training sample is used to update the non-informative prior
and to obtain a new proper informative prior, as in the fractional
BF (O’Hagan, 1995). In practice, however, this strategy is not always
satisfactory because it relies on an arbitrary division of the data.
To alleviate this difficulty, Berger and Perrichi (1996) proposed
the so-called intrinsic BF which is based on the minimal training
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sample that results in proper posteriors. In general, the minimal
training sample is not unique. Hence, the intrinsic BF is obtained
by averaging the partial BFs calculated from all possible minimal
training samples. Unfortunately, the intrinsic BF is computationally
demanding, especially for latent variable models. O’Hagan (1995)
discussed properties of the fractional and the intrinsic BFs.

In the second class, instead of refining the BF methodology,
several interesting Bayesian approaches have been proposed for
hypothesis testing based on the decision theory. For example,
Bernardo and Rueda (2002, BR hereafter) showed that the BF for
the Bayesian hypothesis testing can be regarded as a decision
problem with a simple zero–one discrete loss function. However,
the zero–one discrete function requires the use of non-regular
(not absolutely continuous) prior and this is why the BF leads
to Jeffreys–Lindley’s paradox. BR further suggested using a con-
tinuous loss function, based on the well-known continuous Kull-
back–Leibler (KL) divergence function. As a result, it was shown in
BR that their Bayesian test statistic does not depend on any arbi-
trary constant in the prior. However, BR’s approach has some dis-
advantages. First, the analytical expression of the KL loss function
required by BR is not always available, especially for latent variable
models. Second, the test statistic is not a pivotal quantity. Conse-
quently, BR had to use subjective threshold values to test the hy-
pothesis.

To deal with the computational problem in BR in latent variable
models, Li and Yu (2012, LY hereafter) proposed a new test
statistic based on the Q function in the Expectation–Maximization
(EM) algorithm of Dempster et al. (1977). LY showed that the
new statistic is well-defined under improper priors and easy
to compute for latent variable models. Following the idea of
McCulloch (1989), LY proposed to choose the threshold values
based on the Bernoulli distribution. However, like the test statistic
proposed by BR, the test statistic proposed by LY is not pivotal.
Moreover, it is not clear if the test statistic of LY can resolve
Jeffreys–Lindley’s paradox.

Based on the difference between the deviances, Li et al.
(2014, LZY hereafter), developed another Bayesian test statistic
for hypothesis testing. This test statistic is well-defined under
improper priors, free of Jeffreys–Lindley’s paradox, andnot difficult
to compute. Moreover, its asymptotic distribution can be derived
and one may obtain the threshold values from the asymptotic
distribution. Unfortunately, in general the asymptotic distribution
depends on some unknown population parameters and hence the
test is not pivotal.

In the present paper, we propose an asymptotically pivotal
Bayesian test statistic, based on a quadratic loss function, to test
a point null hypothesis within the decision-theoretic framework.
The new statistic has several nice properties that makes it
appealing in practice after the models are estimated by Bayesian
MCMC methods. First, it is well-defined under improper prior
distributions. Second, it is immune to Jeffreys–Lindley’s paradox.
Third, it is easy to compute. The main computational effort is to
get the first derivative of the likelihood function with respect to
the parameters. For latent variable models, the first derivative can
be easily evaluated from the MCMC output with the help of the
EM algorithm. Fourth, its numerical standard error (NSE) can be
relatively easy to obtain. Finally, the asymptotic distribution of the
test statistic follows the chi-squared distribution and hence the
test is asymptotically pivotal.

Under a set of regularity conditions, we show that if the null
hypothesis is correct our test statistic is asymptotically equivalent
to the Lagrange multiplier (LM) statistic, a very popular test statis-
tic in the frequentist’s paradigm for testing a point null hypothesis.
However, our proposed test has several important advantages over
the LM test. First, it can incorporate the prior information to im-
prove statistical inference. Second, the implementation of the LM

test requires maximum likelihood (ML) estimation of the model
under the null hypothesis. For some models, such as latent vari-
able models and DSGE models, it is generally hard to do ML and,
hence, to compute the LM statistic. Bayesian MCMC has been used
to fit models with increasing complexity. The proposed test is the
by-product of the Bayesian posterior output and hence easier to
implement than the LM test. Third, unlike the LM test that can take
a negative value in finite sample, our test always takes a nonneg-
ative value. Finally, unlike the LM test, the new test does not need
to invert any matrix. This advantage is useful when the dimension
of the parameter space is high.

The paper is organized as follows. Section 2 reviews the
Bayesian literature on testing a point null hypothesis from the
viewpoint of the decision theory. Section 3 develops the new
Bayesian test statistic, establishes its asymptotic properties, dis-
cusses how to compute it and its NSE from theMCMC outputs. Sec-
tion 4 illustrates the new method by using three real examples in
economics and finance. Section 5 concludes the paper. Appendix
collects the proof of all the theoretical results and the derivation of
the test statistic in the examples.

2. Bayesian hypothesis testing under decision theory

2.1. Testing a point null hypothesis

Let the observable data, y = (y1, y2, . . . , yn)′ ∈ Y. A probability
model M ≡ {p(y|θ,ψ)} is used to fit the data. We are concerned
with a point null hypothesis testing problemwhichmay arise from
the prediction of a particular theory. Let θ ∈ 2 denote a vector
of p-dimensional parameters of interest and ψ ∈ 9 a vector of
q-dimensional nuisance parameters. The problemof testing a point
null hypothesis is given by
H0 : θ = θ0
H1 : θ ≠ θ0

. (1)

The hypothesis testing may be formulated as a decision
problem. It is obvious that the decision space has two statistical
decisions, to accept H0 (name it d0) or to reject H0 (name it d1). Let
{L[di, (θ,ψ)], i = 0, 1} be the loss function of statistical decision.
Hence, a natural statistical decision to reject H0 can be made when
the expected posterior loss of accepting H0 is sufficiently larger
than the expected posterior loss of rejecting H0, i.e., when

T(y, θ0) =


Θ


Ψ

{L[d0, (θ,ψ)]

− L[d1, (θ,ψ)]} p(θ,ψ|y)dθdψ > c ≥ 0,

where T(y, θ0) is a Bayesian test statistic; p(θ,ψ|y) is the posterior
distribution with some given prior p(θ,ψ); c is a threshold value.
Let△L[H0, (θ,ψ)] = L[d0, (θ,ψ)]−L[d1, (θ,ψ)] be the net loss
difference function which can generally be used to measure the
evidence against H0 as a function of (θ,ψ). Hence, the Bayesian
test statistic can be rewritten as

T(y, θ0) = Eϑ|y (△L[H0, (θ,ψ)]) .

2.2. A literature review

The BF is defined as the ratio of the two marginal likelihood
functions, namely,

BF01 =
p(y|M0)

p(y|M1)
,
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