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This paper studies semiparametric efficient estimation of the threshold point in threshold regression. The
classical literature of semiparametric efficient estimation rests on the fact that the maximum likelihood
estimator is efficient in any parametric submodel for a large class of loss functions. However, in threshold
regression, the maximum likelihood estimator is not efficient, while the Bayes estimators are efficient
and different loss functions induce different efficient estimators. For an additively separable loss function
that separates the efficiency problem of the threshold point from that of other parameters, we show that
the semiparametric and parametric efficiency risk bounds coincide. Then we design a semiparametric
empirical Bayes estimator to achieve this bound. In consequence, the threshold point can be adaptively
estimated even under conditional moment restrictions. We also provide a valid confidence interval
called the nonparametric posterior interval for the threshold point. Simulation studies show that the
semiparametric empirical Bayes approach is substantially better than existing methods. To illustrate our
procedure in practice, we apply it to an economic growth model for detecting different growth patterns.
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1. Introduction

The linear regression model has played a prominent role in
econometric analysis. One important limitation of the linear re-
gression model is that different groups of entities may have differ-
ent behaviors in a specific economic problem. For example, Durlauf
and Johnson (1995) show that rich countries and poor countries
have different growth patterns. The question is how to separate
these two groups of countries and estimate their respective growth
paths. The threshold regression (TR) model introduced by Tong
(1978, 1983) and Tong and Lim (1980) is designed to answer such a
question; see Tong (1990, 2011) for a summary of the TR literature
in statistics and Hansen (2011) in econometrics. The typical setup
of TR models is as follows:

_ [¥Bi+oe qg<vy; )
XBy+ose, q>vy,

where q is the threshold variable used to split the sample with
pdf f;(-) and cdf Fy(-), y is the unknown threshold point, x € R¥
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includes characteristics, 8 = (B, 8;) € R* and 0 = (01, 03)’
are parameters in the mean and variance of the two groups. We
assume that x does not include the intercept, discrete regressors
or q; these cases can be easily adapted in the following discussion.
We also set E[e?] = 1 as a normalization of the error variance and
allow for conditional heteroskedasticity. The usual conditional mo-
ment restriction is

Elelx, q] = 0. (2)

There are two asymptotic frameworks for statistical inferences
on y. The first is introduced by Chan (1993) in a nonlinear time
series context, where (], 01)/ — (B, 0'2), is a fixed constant. The
second is introduced by Hansen (2000), where no threshold effect
on variance exists and the threshold effect in mean diminishes
asymptotically. This paper follows the discontinuous framework
of Chan (1993) with i.i.d. data.

Both Chan (1993) and Hansen (2000) use the least squares es-
timator (LSE) to estimate y, but the problem of semiparametric
efficient estimation of y has not been studied. The difficulty lies
in the fact that parameters considered in most existing literature
of semiparametric efficiency are regular, while y is not a regu-
lar parameter. For a regular parameter, the maximum likelihood
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estimator (MLE) is asymptotically normal and efficient in any para-
metric submodel for a large class of loss functions. As a result,
the efficiency of an estimator is indicated by its asymptotic vari-
ance. This is the starting point of finding semiparametric efficiency
bounds. As the semiparametric problem is not easier than any
parametric subproblem, the semiparametric efficiency bound is
defined as the supremum of asymptotic variances of the MLEs
among all submodels. In threshold regression, Yu (2012), inspired
by the literature on boundary estimation such as Hirano and Porter
(2003) and Chernozhukov and Hong (2004), shows that the MLE is
not efficient for y, while the Bayes estimators are efficient. Further-
more, different loss functions induce different efficient estimators.
This makes the techniques for finding semiparametric efficient es-
timators in the existing literature not applicable.

In this paper, we solve the semiparametric efficiency problem
of y in two steps. First, in Section 2, we separate the efficiency
problem of y from that of other regular parameters by using an
additively separable loss function. Given any such loss function, we
show that the risk of the Bayes estimator of y in any parametric
submodel is the same as that when the true conditional density
felx,q is known. Therefore, the semiparametric efficiency risk bound
of y for a given loss function is the risk in the parametric model,
and the conditional moment restriction (2) does not lose any
information from the completely known f, x4 case. Second, in
Section 3, we use a semiparametric empirical Bayes (SEB) approach
to find an estimator of y that achieves the efficiency risk bound.
The SEB estimator (SEBE) is adaptive in the sense that the risk
in the parametric case can be reached even if f, 4 is not exactly
known. It should be pointed out that all Bayes procedures in this
paper are evaluated by classical efficiency criteria; in other words,
the randomness is confined to the data and does not include
parameters.

Although the SEBE has the same asymptotic risk as the para-
metric Bayes estimator, it is less susceptible to misspecification
because no parametric specification is needed for the distribution
of e. y can be identified as in the correctly specified parametric
model as long as (2) is imposed. Also, the SEBE avoids the Diaco-
nis and Freedman (1986a,b)’s inconsistency problem by estimating
the nuisance density f,|x 4 rather than imposing a Dirichlet prior on
it. The literature discussing how to avoid the Diaconis and Freed-
man’s problem in the Bayesian framework all concentrates on reg-
ular models.

A corollary of the SEB method is to provide a valid confidence
interval (CI) for y. The CI construction for y is unsolved in
Chan (1993) and reconsidered in Hansen (2000). In Section 4,
we discuss the difficulties in the previous papers and propose an
alternative valid CI for y—the nonparametric posterior interval
(NPI). Section 5 includes some simplification and extension of the
SEB approach to increase its applicability and to improve its finite-
sample performance. The simulation results in Section 6 show that
the SEBE has a lower risk and the NPI has better coverage and
length properties than the existing methods. Section 7 applies the
SEB method to an economic growth model and Section 8 concludes.
All regularity conditions, proofs and tables in simulations and
the application are given in Appendices A-C, respectively. Certain
technical materials of the paper are collected in supplementary
materials (see Appendix D).! Notations: the Euclidean norm of a
vector x € R¥ is denoted as ||x||, and C or C with a subscript is used
as a generic positive constant, which need not be the same in each
occurrence.

1 The code for simulations and application and the supplementary materials are
available at http://homes.eco.auckland.ac.nz/pyu013/research.html.

2. Semiparametric efficiency risk bound

We first recall the parametric results of Yu (2012) in Section 2.1.
We then show that the semiparametric bound is the same as
the parametric bound using a simple example and provide some
intuition for this adaptive result in Section 2.2. At the end of
Section 2.2, we also discuss a technical assumption on the loss
function in the semiparametric efficiency risk bound derivation.

2.1. Parametric efficient estimation

The main results of Yu (2012) are that the Bayes estimator (BE)
is more efficient than the MLE for estimating y, the threshold
point. Suppose fexq is known as fxq (elx, q; @), where o €
R% is some nuisance parameter affecting the shape of the error
distribution. Assume further that the loss function is additively
separable on regular parameters and the nonregular parameter y;

thatis, [(0) = (8, y) = 1 (8) + L (¥), where 8 = (¢',y),0 =

(B0, oe/)’, and I; is bowl-shaped.? This assumption is important
for the semiparametric efficient estimation of y, as it separates the
efficiency problem of y from that of the regular parameters. Such
an assumption is motivated by the sequential estimation of y and
6. Usually, a profiled procedure is used to estimate y first, and then
estimate 6 as if y were known; see, e.g., Hansen (2000) and Yu
(2012). It is reasonable to impose a loss function on each of these
two steps without interactions.

Under regularity conditions specified in Yu (2012), the BE

/
@\;E, ?35) based on [ is most efficient in the locally asymptotically
minimax (LAM) sense, and the asymptotic distribution is

Vi @5 — ) <> 20~ N (0.47]),

n (Vee — o) 4 Z, = arg mtin I (t — v) p5(v)dv,
R

(3)

where fg, is the information matrix of 0, p5(v) = %
- R

is the normalized asymptotic posterior of y, and these two
asymptotic distributions are independent. Note that @ has the
same asymptotic distribution as the MLE. The D(v) in p3(v) is a
compound Poisson process defined as

Ny(JvD
Z zii, ifv <0
DW= 1w (4)
Z 22i, ifv > 0;
i=1
which is cadlag with D(0) = 0, where all zy;, z5;, 1 = 1,2,

..., Ny (") and N, (-) are mutually independent of each other,
N¢ (+),€ = 1, 2,isaPoisson process with intensity f; (yo), z1; follows
the limiting conditional distribution of

Lty ( o10€i+X; (B10—F20)
a0 €% 020

Xi, qi; Olo)
Jelx.q (€ilXi, gis ao)

given yp + A < q; < y0, A < 0with A 1 0 and is denoted as
Z1i| (@i = y0—), and z,; follows the limiting conditional distribution
of

211' =In

o a20€i—x/(B10—F20)
107 %4 o10

Xi, qis Olo)

221' =In
Jeix.q (€ilXi, gi; ao)

2 A function is defined to be bowl-shaped if the sublevel sets {x : [(x) < C} are
convex and symmetric about the origin.
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