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a b s t r a c t

The regression discontinuity design has become a common framework among applied economists for
measuring treatment effects. A key restriction of the existing literature is the assumption that the
discontinuity point is known, which does not always hold in practice. This paper extends the applicability
of the regression discontinuity design by allowing for an unknown discontinuity point. First, we construct
a unified test statistic to check whether there are selection or treatment effects. Our tests are shown to be
consistent, and local powers are derived. Also, a bootstrap method is proposed to obtain critical values.
Second, we estimate the treatment effect by first estimating the nuisance discontinuity point. It is shown
that estimating the discontinuity point does not affect the efficiency of the treatment effect estimator.
Simulation studies illustrate the usefulness of our procedures in finite samples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since its invention by Thistlethwaite and Campbell (1960), the
regression discontinuity design (RDD) has attracted much atten-
tion among econometricians; see Imbens and Lemieux (2008), van
der Klaauw (2008) and Lee and Lemieux (2010) for excellent re-
views on up-to-date theoretical developments and applications
and Yu (2013) for a summary of treatment effects estimators in
RDDs. In RDDs, an observable covariate is used to completely de-
termine the treatment status, and is called the forcing (running or
assignment) variable. When the value of the covariate for an indi-
vidual is above a threshold or discontinuity point, the individual
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will be treated; otherwise, the individual will be put in the control
group. Usually, the discontinuity point is set by the policy maker
and is publicly known. However, such information is not always
available in practice. Sometimes, the discontinuity point is only
known to the policy maker but is unknown to the public (includ-
ing econometricians) due to ethical reasons or privacy. In the clas-
sical application of RDDs in the effect of the scholarship offers on
student enrollment decisions by van der Klaauw (2002), the forc-
ing variable is an underlying index of various individual character-
istics. To avoid manipulation by individuals or competition from
other schools, the discontinuity point may not be disclosed. An-
other example with an unknown discontinuity point is Card et al.
(2008) who analyze the tipping effect in the dynamic of segrega-
tion. Specifically, when the minority share in a neighborhood ex-
ceeds a ‘‘tipping point’’, all the whites leave. Such a tipping point
depends on the strength of white distaste for minority neighbors
and is generally unknown.

To date, all existing literature on RDDs assumes that the discon-
tinuity point is known, especially to econometricians. This paper
studies the testing and estimation problem when the discontinu-
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ity point is unknown. In testing, we try to check whether there are
selection or treatment effects in our experiment. The first test is
to check whether there is selection among individuals. This test
is new in the literature. The second test is to check the presence
of treatment effects. This test is very close to the nonparametric
structural change test, and there have been at least three tests de-
signed for this purpose in the statistical literature. Our test is in-
spired by the nonparametric specification testing literature started
from Bierens (1982), and is novel in our context. We solve both
testing problems by a unified test statistic, but adapt it to different
problems by varying a smoothing parameter. The test statistic is
constructed under the null, so is similar to the score test in spirit. In
estimation, our main interest lies in the treatment effects evalua-
tion, but a primary input, the discontinuity point, is unknown. So
we estimate the discontinuity point first by an estimator called
the difference kernel estimator (DKE). We show its superconsis-
tency and find its asymptotic distribution, and then estimate the
treatment effect as if the discontinuity point were known. It is
surprising that estimation of the discontinuity point does not af-
fect the efficiency of the treatment effect estimator asymptoti-
cally. Themodel we consider has many applications beyond RDDs;
see Müller (1992), Wu and Chu (1993a), Wang (1995), Müller and
Stadtmüller (1999), and the reference therein for applications in
statistics.

This paper is organized as follows. In Section 2, we set up our
framework and specify some regularity assumptions. Especially,
we clarify what selection means and what it implies to observa-
tions. Section 3 presents our specification test statistic and de-
velops its asymptotic distributions in different testing problems.
Furthermore, a bootstrap method is suggested to obtain critical
values which may have better finite sample performances. Alter-
native tests of nonparametric structural change in the statistical
literature are also reviewed and compared with our test. Section 4
considers the estimation problem. We provide estimators of the
discontinuity point and the treatment effect, and develop their
asymptotic distributions. In Section 5, we extend the results in Sec-
tions 3 and 4 to other settings and solve an important practical
issue, the bandwidth selection, in both specification testing and
estimation. Section 6 includes some simulation results and Sec-
tion 7 concludes. To save space, we put some intuitions and all
technical proofs in the online supplementary materials (see Ap-
pendix A).

Throughout this paper, we concentrate on the sharp design and
discuss the fuzzy design only briefly in Sections 5.1 and 5.2. Such
an arrangement allows us to focus on the main idea of this paper.
In the sharp design, we assume that only the response variable
and the forcing variable are observable, while the treatment
status is not. Otherwise, the testing and estimation problem will
degenerate to the case with a known discontinuity point; see
Section 2 of Yu (2012) and Section 2.2 of Yu and Zhao (2013) for
a detailed discussion on this point. We further concentrate on the
sharp design with at most one discontinuity point; generalization
to finite and unknown number of discontinuity points is only
discussed briefly in Section 5.3.

A word on notation: the letter C is used as a generic positive
constant, which need not be the same in each occurrence. WLOG
means ‘‘without loss of generality’’. DGP means ‘‘data generating
process’’. LLS means the ‘‘local linear smoother’’ popularized by
Fan (1992, 1993) and Fan and Gijbels (1996). The symbol ≈

means that the higher-order terms are omitted or a constant
term is omitted (depending on the context). w.p.a.1 means ‘‘with
probability approaching one’’. For a nonnegative real s, [s] is its
integer part. For any two random variables x and y, f (x) means
the density of x and f (y|x) means the conditional density of y
given x. The letter π0 represents the true discontinuity point and
π represents a generic discontinuity point in the parameter space

Π =

π, π


, where π and π are constants and π < π0 < π .

For a function g(x), g(x) has a cusp at x = π means that g(x) is
continuous at π but g ′(π+) ≠ g ′(π−), that is, the left and right
derivatives at π are not the same. ‘‘Discontinuity’’ and ‘‘jump’’ are
used exchangeably.

2. Framework and assumptions

We first put RDDs in the usual treatment framework anddiscuss
a key ‘‘selection’’ assumption. Such a framework can be treated as
the structural form of RDDs. We then impose some smoothness
assumptions on the usual reduced-form formulation of RDDs. Such
assumptions are necessary for the development of the testing and
estimation procedures in this paper. Finally, we sketch the basic
ideas of our specification testing and estimation.

2.1. Selection and treatment effects

Following Lee (2008), suppose the response y = y(x,U), where
x is the one-dimensional forcing variable which is observable,
and U is the unobservable component such as students’ ability in
the scholarship example of van der Klaauw (2002). We assume
that there can be any correlation between U and x.1 Also, y(x,U)
satisfies the following smoothness assumptions.

Assumption Y. (a) If there is no treatment or there is treatment
but are no treatment effects, y(x,U) = y(x,U) is continuous in
(x,U) and is continuously differentiable in x for each U .

(b) If there are treatment effects, y(x,U) = y(x,U) + α(U)1
(x ≥ π) with α(U) being continuous.

Under Assumption Y, when there are no treatment effects, the
response y is a smooth function of x after controlling for all specific
characters (except x) of an individual. In the special case where y
takes the additively separable form, y = g(x) + U , g(·) is assumed
to be continuously differentiable. This is understandable because
it is hard to imagine y changes dramatically when x changes from
x−∆ to x+∆ for a small∆ given that human beings usually behave
smoothly. Even if there are treatment effects, y(x,U) only changes
its size at x = π , and the slopes at the left and right sides of π
remain the same.

Under Assumption Y, using notations of the conventional
average treatment effects literature such as Heckman and Vytlacil
(2007a,b), we can express the responses of the control and treated
group as follows:

Y0 = µ0(x,U0), Y1 = µ1(x,U1) and D = 1(x ≥ π),

whereµ0(x,U0) = y(x,U)withU0 = U andµ1(x,U1) = y(x,U)+

α(U) with U1 = U . The main difference of RDDs from the conven-
tional average treatment effects framework is that the treatment
status is determined by a single observable x, so the treatment
status can be sharply observed (or there is a discontinuity in the
propensity score at π , or the unconfoundedness condition is triv-
ially satisfied). Such an advantage is not free. The usual overlap as-
sumption is violated because given any x, we can observe either
Y0 or Y1 but not both. We must rely on the continuity of µ0(x,U0)
in the left neighborhood of π to predict its behavior in the right
neighborhood of π , and similarly forµ1(x,U1). As a result, we only
use the local information around π to identify the treatment ef-
fects, which makes the treatment effects estimator achieve only a

1 From the Skorohod representation, y can be expressed as Q (U|x), where Q (·|x)
is the conditional quantile function of y given x, and U|x ∼ U(0, 1). Note here that
U and x can have any correlation; see Section 2.1 of Yu (2014b) formore discussions
on this point. Only in quantile regression, we assume U and x are independent.
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