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a b s t r a c t

Two estimation procedures dominate the cointegration literature: Johansen’s maximum likelihood
inference on vector autoregressive error correction models and estimation of Phillips’ triangular forms.
This latter methodology is essentially semiparametric, focusing on estimating long run parameters by
means of cointegrating regressions. However, it is less used in practice than Johansen’s approach, since
its implementation requires prior knowledge of features such as the cointegrating rank and an appropriate
set of non-cointegrated regressors. In this paper we develop a simple and automatic procedure (based on
unit root and regression-based cointegration testing) which, without imposing a parametric specification
for the short run components of themodel, provides an estimator of the cointegrating rank anddata-based
just-identifying conditions for the cointegrating parameters which lead to a Phillips’ triangular form. A
Monte Carlo analysis of the properties of the estimator and an empirical application are also provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cointegration has been one of the main workhorses of time
series econometrics in the last two decades and, even if the lit-
erature is somewhat mature, it still attracts substantial attention
from both theoretical and empirical perspectives (see, e.g., Hoover
et al., 2008, or Johansen, 2010). Two approaches to the estimation
of cointegration systems appear to be dominant. The first, devel-
oped by Johansen (1988, 1991) and Ahn and Reinsel (1990), fo-
cuses on maximum likelihood inference on vector autoregressive
(VAR) error correction models. This approach has been the most
popular in practice, mainly because it both provides an estimator
of the cointegrating rank and leads to empirical (data-based) just-
identifying restrictions fromwhich estimators of the cointegrating
vectors can be easily obtained. Additionally, it offers estimators of
the short run parameters and a neat hypothesis testing procedure,
where given economic theories can be checked. The second domi-
nant strategy focuses on estimation of the so-called Phillips’ trian-
gular form (Phillips, 1991a). This approach, which relates directly
to the simultaneous equations models methodology, consists of
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specifying the cointegrating relations by a set of reduced form re-
gression equations from which estimation of structural equations
(those with economic meaning) can be derived (see Saikkonen,
1993).Within this setting, different estimationmethods have been
proposed and, noticeably, it has been shown that parametric as-
sumptions on the short run components do not lead to gains in
asymptotic efficiency in the estimation of cointegrating vectors
(see Phillips and Hansen, 1990; Phillips, 1991b). Pesaran and Shin
(2002) provide a comparison of both methods.

In contrast to Johansen’s approach, Phillips’ methodology is es-
sentially semiparametric, focusing on the long run components of
the model and taking an agnostic approach about the short run
dynamics, which, in any case, once parameterized, can be subse-
quently estimated if desired. While this appears to be an attractive
feature (compared to a fully parametric approach), there are sev-
eral limitations associated to Phillips’ methodology. First, the pro-
cedure takes the cointegrating rank as given. Moreover, based on
this rank, the vector of observables is decomposed into two sub-
vectors corresponding to dependent variables and regressors in
particular cointegrating regressions. Specifically, the number of
dependent variables should be the same as the cointegrating rank,
and the rest of the variables (regressors) must not be cointegrated,
otherwise they would be perfectly correlated asymptotically. In
short, Phillips’ approach imposes a priori identification conditions
on the cointegrating parameters, and this leads to uncertainty on
how to act in practice. As a result, in comparison to Johansen’s
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approach, this methodology has been hardly used in applied work,
except in the single-equation framework, where an extensive lit-
erature on testing for cointegration exists (see, e.g. Haug, 1996, for
a review). Note, however, that, when facing multivariate systems,
the possibility that various cointegrating relations exist needs to
be allowed for, so, at first sight, single-equation regression ap-
proaches appear not to be useful. Single-equation tests can be ex-
tended to systems of equations (see Ahn and Choi, 1995), but this
would still require imposing identifying restrictions to design coin-
tegrating regressions, so the application of such methods in prac-
tice remains speculative.

In this paper we develop a procedure to infer the cointegrat-
ing rank and to design a set of regressions from which the coin-
tegrating vectors in system frameworks can be estimated. Our
analysis focuses on I (1) systems (where, after differencing and
possibly eliminating time-varying deterministic components, the
vector of observables is covariance stationary with nonzero and
bounded spectral density), but our method allows for simple ex-
tensions to higher order settings, although we do not pursue this
here.

Given the abundant literature on cointegration, it is warranted
that we highlight the extent of our contribution. First, our pro-
posal requires neither the imposition of a priori identifying condi-
tions nor the specification of a parametric model for the short run
components. There are procedures in the literature which achieve
a similar goal, like the principal components approach (see Stock
and Watson, 1988; Harris, 1997; Snell, 1999), the nonparametric
method of Bierens (1997), or the test of common stochastic trends
of Nyblom and Harvey (2000). However, while the main focus of
these proposals is to test for a particular cointegrating rank (de-
noted throughout as r), they do not provide a formal discussion
of estimation of r (with the exception of Bierens, 1997), and their
estimators of the cointegrating vectors are based on eigenvalues
routines and orthogonality restrictions, which might be difficult
to interpret. We offer a formal discussion of the properties of our
estimator of r , and, in addition, this estimator is based on simple
techniques (like unit root testing) which belong to the standard
time series toolkit. Second, once the cointegrating rank is deter-
mined, our method provides data-based just-identifying restric-
tions which lead to a Phillips’ triangular form. In particular, our
proposal identifies automatically the set of regressors fromwhich a
Phillips’ triangular form can be straightforwardly estimated with-
out imposing any a priori identification conditions. Thus, in prac-
tice, we provide a method which makes the application of Phillips’
approach feasible, hence offering a valid alternative to Johansen’s
methodology. We believe there are relevant contexts where our
proposal might indeed enjoy advantages over Johansen’s. In par-
ticular, avoiding parametric assumptions on the short-run dynam-
ics makes the method more robust to misspecification. It also
seems preferable in high-dimensional models, where parametric
prescriptions would lead to estimating a very large number of
parameters, thus possibly inducing small sample problems. Ad-
ditionally, Gonzalo and Lee (1998) showed that residual-based
cointegration tests are more robust than Johansen’s likelihood ra-
tio (LR) type of tests to empirically relevant departures from the
model, such as autoregressive processes with roots (marginally)
larger than unity or stochastic roots, mistaken order of integra-
tion of the system (I (2) taken as I (1) with drift), wrong choice of
deterministic components or fractional processes. We believe our
proposal might have advantages in these cases and provide some
evidence based on Monte Carlo simulations. Finally, we shed light
on the delicate issue of choosing appropriately the regressors in
cointegrating regressions. Here, our results appear to be useful
even in uni-equation (including bivariate) settings,where residual-
based cointegration testing is routinely applied by practitioners,
but where a wrong design of the possible cointegrating regression

(due to cointegrated regressors) might lead to erroneous conclu-
sions.

The rest of the paper is organized as follows. In Section 2 we
introduce some preliminary concepts and a result on which our
methodology is based. In Section 3 we present a method to select
common trends which, as will be seen below, is an essential com-
ponent of our estimator of r . This estimator is introduced and its
properties are discussed in Section 4. Next, in Section 5, we com-
pare the finite sample performance of our procedure with that of
Johansen’s trace test (see, e.g. Johansen, 1995). In Section 6 we
discuss an empirical analysis of the term structure of US interest
rates and, finally, in Section 7, we conclude. Proofs of theorems are
relegated to the Appendix.

2. Preliminary concepts and results

We first introduce some definitions. We say that a scalar or
vector process ξt is integrated of order zero (ξt ∼ I (0)) if ξt −

E (ξt) is covariance stationary with nonzero and bounded spectral
density at all frequencies. Then, a scalar or vector ζt is integrated of
order one (ζt ∼ I (1)), if ∆ζt is I (0), where ∆ = 1 − L, L being the
lag operator. Note that if a vector ζt is I (1), our definition (which
is almost identical to that of Johansen, 1995) implies that at least
one of the individual components of ζt is I (1), but, in general, an
I (1) vector is allowed to have individual components with distinct
integration orders.

Next, we define cointegration for I (1) processes. Given a p × 1
process zt ∼ I (1), zt is cointegrated if there exists a p × 1 vector
γ ≠ 0 such that γ ′zt −E


γ ′zt


(prime denoting transposition) can

bemade covariance stationary by a suitable choice of initial values.
Hereafter, a process which can be made covariance stationary (or
I (0)) by a suitable choice of initial values will just be denoted
as stationary (or I (0)). Again, this definition is almost identical
to that of Johansen (1995), and it is significantly more general
than the standard notion of Engle and Granger (1987), where all
observables are required to have identical integration orders. Note
that, according to our definition, some of the cointegrating vectors
might be trivial, just indicating that a particular observable is
stationary (possibly after eliminating time-varying deterministic
components). Also, note that γ ′zt need not be I (0) (e.g. if γ ′zt −

E

γ ′zt


is noninvertible). As usual, the cointegrating rank (r)

among the elements of zt is the number of linearly independent
cointegrating vectors, and the space generated by these vectors
(whose dimension is r) will be denoted as cointegrating space.

A very general model which generates a possibly I (1) and
cointegrated p × 1 vector of observables zt is

Υ ∆ (zt − µt) = ut , (1)

where Υ is a p × p nonsingular matrix, µt is a deterministic com-
ponent and ut is a zero-mean p × 1 covariance stationary process
which satisfies one (and only one) of the following conditions:

(i) ut is I (0) with nonsingular spectral density matrix at all
frequencies;

(ii) some components of ut form a subvector which is I (0) with
nonsingular spectral density matrix at all frequencies, the
rest of the components forming another subvector which is
the first difference of a zero-mean stationary process with
bounded spectral density matrix at all frequencies;

(iii) ut is the first difference of a zero-mean stationary processwith
bounded spectral density matrix at all frequencies.

We also set E (z0) = µ0, so (1) immediately implies that E (zt)
= µt , t ≥ 1. In (1), the integration and cointegration properties
of zt depend both on Υ and ut . For example, under (i) or (ii),
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