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a b s t r a c t

We develop methods for testing whether, in a finite sample, forecasts from nested models are equally
accurate. Most prior work has focused on a null of equal accuracy in population — basically, whether
the additional coefficients of the larger model are zero. Our asymptotic approximation instead treats the
coefficients as non-zero but small, such that, in a finite sample, forecasts from the small and large models
are expected to be equally accurate. We derive the limiting distributions of tests of equal mean square
error, and develop a bootstrap for inference. Simulations show that our procedures have good size and
power properties.
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1. Introduction

In this paper we examine the asymptotic and finite-sample
properties of bootstrap-based tests of equal accuracy of out-of-
sample forecasts from a baseline nested model and an alternative
nesting model. In our analysis, we address two forms of the null
hypothesis of equal predictive ability. One hypothesis, considered
in such studies as Clark and McCracken (2001, 2005a), Corradi
and Swanson (2002), Inoue and Kilian (2004), and McCracken
(2007), is that the models have equal population-level predictive
ability. This situation arises when the coefficients associated with
the additional predictors in the nesting model are zero and hence
at the population level, the forecast errors are identical and thus
the models have equal predictive ability.

However, this paper focuses on a different null hypothesis,
one that arises when some of the additional predictors have non-
zero coefficients associatedwith them, but themarginal predictive
content is small. In this case, addressed in Trenkler and Toutenburg
(1992), Giacomini and White (2006), Hjalmarsson (2009) and
Clark and McCracken (2009), the two models can have equal
predictive ability at a fixed forecast origin (say time R) due to
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a bias–variance trade-off between a more accurately estimated,
but misspecified, nested model and a correctly specified, but
imprecisely estimated, nesting model. Building upon this insight,
we derive the asymptotic distributions associated with standard
out-of-sample tests of equal predictive ability between estimated
models with weak predictors. We then develop a bootstrap-based
method for imposing the null of equal predictive ability upon these
distributions and conducting asymptotically valid inference. In our
results, the forecast models may be estimated either recursively or
with a rolling sample. Giacomini and White (2006) use a different
asymptotic approximation to testing equal forecast accuracy in
a given sample, but their asymptotics apply only to models
estimated with a rolling window of fixed and finite width.

Our approach to modeling weak predictors is identical to the
standard Pitman drift used to analyze the power of in-sample tests
against small deviations from the null of equal population-level
predictive ability. It has also been used by Inoue and Kilian (2004)
in the context of analyzing the power of out-of-sample tests. In
that sense, some (though not all) of our analytical results are quite
similar to those in Inoue and Kilian (2004).

We differ, though, in our focus. While Inoue and Kilian (2004)
are interested in examining the power of out-of-sample tests
against the null of equal population-level predictive ability, we are
interested in using out-of-sample tests to test the null hypothesis
of equal finite sample predictive ability. This distinction arises
because the estimation error associated with estimating unknown
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regression parameters can cause a misspecified, restricted model
to be as accurate or more accurate than a correctly specified
unrestrictedmodel when the additional predictors are imprecisely
estimated (or, in our terminology, are ‘‘weak’’).We use Pitman drift
simply as a tool for constructing an asymptotic approximation to
the finite sample problem associated with estimating a regression
coefficient when the marginal signal associated with it is small.

The lengthy literature evaluating direct, multi-step (DMS) fore-
casts from nested models indicates our results for these forecasts
should be useful to many researchers. Applications considering
DMS forecasts from nested linear models include, among others:
many of the studies cited above; Diebold and Rudebusch (1991);
Mark (1995); Kilian (1999); Lettau and Ludvigson (2001); Stock
and Watson (2003); Bachmeier and Swanson (2005); Butler et al.
(2005); Cooper andGulen (2006); Giacomini and Rossi (2006); Guo
(2006); Rapach and Wohar (2006); Bruneau et al. (2007); Bordo
and Haubrich (2008); Inoue and Rossi (2008); Molodtsova and Pa-
pell (2009); Chen et al. (2010); and Ferreira and Santa-Clara (2011).

The remainder proceeds as follows. Section 2 uses a very simple
illustrative data-generating process to flesh out the intuition
behind our analysis and results — including the precise nature of
the null hypothesis, the bootstrap algorithm, and the validity of the
bootstrap. With that foundation, the paper then turns to the more
general case. Section 3 introduces the notation, assumptions, and
presents our theoretical results and bootstrap for testing the null
of equal forecast accuracy in the finite sample. Proofs are provided
in a supplementary online appendix (see Appendix A). Section 4
presents Monte Carlo results on the finite-sample performance
of the asymptotics and the bootstrap. Section 5 applies our tests
to evaluate the predictability of US stock returns and core PCE
inflation. Section 6 concludes.

2. An illustrative example

We begin by using a simple example to first clarify how our
results differ from those obtained in Giacomini and White (2006)
and to then illustrate our essential ideas. This example uses a
simple DGP: yt+1 = µ + ut+1, where µ is non-stochastic and
ut+1 forms a homoskedastic martingale difference sequence with
variance σ 2.

2.1. Simple version of our test of equal forecast accuracy in the finite
sample

Consider comparing the finite sample forecast accuracy of two
nested models, with accuracy measured under quadratic loss. In
this simple example, Model 0 is a no-change model, such that
ŷ0,t+1 = 0. Model 1 is an OLS-estimated location model, corre-
sponding to the form of the DGP: ŷ1,t+1 = ȳt , where ȳt equals
t−1t

s=1 ys and R−1t
s=t−R+1 ys under the recursive (expand-

ing window) or rolling window estimation schemes, respectively.
From these models, we produce a total of P forecasts, take the dif-
ference in the squared forecast errors, and average across the fore-
cast origins t = R, . . . , R+P−1. The expectation of this difference
in average squared errors, P−1R+P−1

t=R E(û2
0,t+1 − û2

1,t+1), equals

µ2
− P−1R+P−1

t=R
σ 2

t and µ2
−

σ 2

R for the recursive and rolling
schemes, respectively. Theµ2 (bias) term of the difference inmean
square errors (MSEs) arises due to misspecification in model 0,
while the second term arises due to marginally greater estimation
risk (variance) in model 1. We say the two models are expected
to exhibit equal finite sample accuracy when the tradeoff be-
tween the bias and variance terms implies P−1R+P−1

t=R E(û2
0,t+1 −

û2
1,t+1) = 0.
The goal then becomes to develop the distribution of a statistic

when this moment condition forms the null hypothesis. To avoid

strong assumptions about the predictors and the model errors, we
focus on asymptotic distributions. Unfortunately, as the number
of forecasts P and initial sample size R diverge to infinity, P−1R+P−1

t=R E(û2
0,t+1 − û2

1,t+1) converges to µ2 and hence in large
samples the two models will be equally accurate only in the trivial
case in which µ = 0. Since the null of interest is one of equal finite
sample accuracy, we cannot simply proceed with this formulation
of the DGP and the null implication that µ = 0. The reason is that
with µ = 0, the models will not be equally accurate in the finite
sample; if µ = 0, model 1 has to be less accurate than model 0
in the finite sample, because model 1 introduces estimation risk
of a parameter that is 0 in population. Put another way, when
µ = 0 there can be no bias–variance tradeoff that makes the
models equally accurate in the finite sample.

To develop a test of equal accuracy in the finite sample,
Giacomini and White (2006) worked with a different null hy-
pothesis. They departed from a null hypothesis formulated us-
ing limR,P→∞ P−1R+P−1

t=R E(û2
0,t+1 − û2

1,t+1) = 0 because, if the
asymptotics allow R to increase, the estimation risk component
σ 2/R converges to zero, precluding the bias-tradeoff needed for
the models to be equally accurate in forecasting in the finite sam-
ple. They instead assumed the estimationwindow size R to be fixed
and finite, with model parameters and forecasts produced using a
rolling window scheme. They then formulated the null hypothe-
sis as limP→∞ P−1R+P−1

t=R E(û2
0,t+1 − û2

1,t+1) = 0. With the model
estimation sample size held fixed and this version of the null hy-
pothesis of equal accuracy in the finite sample, the null-implied
hypothesis µ2

−
σ 2

R = 0 is viable even when P diverges to infin-
ity. Note that in this asymptotic framework, parameter estimation
error remains ‘‘large’’ because the parameter estimates do not con-
verge in probability.

In this paper, to permit environments in which the param-
eter estimates are estimated using an expanding, or recursive,
window as we proceed across forecast origins, we must take a
different approach to the asymptotics and null hypothesis. The
main problem is that, with recursive estimation and standard large
R, P asymptotics, estimation error eventually becomes ‘‘small’’ in
the sense that the parameter estimates converge in probability. To
avoid this problem, and yet still allow a bias–variance tradeoff
to exist, we model the bias as being equally small. In the con-
text of our current example, consider modeling the unconditional
mean µ as being local-to-zero such that µ = µw/R1/2. Let
limP,R→∞ P/R = λP ∈ (0, ∞). If we then restate the null hypothe-
sis as limR,P→∞

R+P−1
t=R E(û2

0,t+1 − û2
1,t+1) = 0, we find that this is

equivalent to λPµ
2
w − ln(1 + λP)σ

2
= 0 and µ2

w − σ 2
= 0 under

the recursive and rolling estimation schemes, respectively.
Under this null hypothesis we derive the asymptotic distribu-

tion of two tests of equal mean square error. The simpler one we
will focus on in this example is an F-type test of equal MSE, given
by

MSE-F = P ×
MSE0 − MSE1

MSE1
.

Because the asymptotic distribution of the statistic is non-
standard, we use a bootstrap to obtain asymptotic critical values.
In this simple example, the bootstrap proceeds as follows.

1. (a) Estimate the model ys = m + u1,s, s = 1, . . . , T , by OLS.
Save the residuals û1,s and residual variance σ̂ 2

1 . (b) Estimate
the ridge regression

µ̃w,T = argmin
m

T
s=1

(ys − m)2 s.t. m2
= d̂/R,

where λ̂P = P/R and d equals ln(1+λP )λP σ̂ 2
1 and σ̂ 2

1 for the
recursive and rolling schemes, respectively. Save µ̃w,T . This
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