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a b s t r a c t

The generalised autocovariance function is defined for a stationary stochastic process as the inverse
Fourier transform of the power transformation of the spectral density function. Depending on the value
of the transformation parameter, this function nests the inverse and the traditional autocovariance func-
tions. A frequency domain non-parametric estimator based on the power transformation of the pooled pe-
riodogram is considered and its asymptotic distribution is derived. The results are employed to construct
classes of tests of the white noise hypothesis, for clustering and discrimination of stochastic processes
and to introduce a novel feature matching estimator of the spectrum.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The temporal dependence structure of a stationary stochastic
process is characterised by the autocovariance function, or
equivalently by its Fourier transform, the spectral density function.
We extend this important concept, by introducing the generalised
autocovariance function (GACV), which we define as the inverse
Fourier transform of the pth power of the spectral density function,
where p is a real parameter. The GACV depends on two arguments,
the power parameter p and the lag k. Dividing by the GACV at
lag zero for p given yields the generalised autocorrelation function
(GACF).

For k = 0 the GACV is related to the variance profile, intro-
duced by Luati et al. (2012) as the Hölder mean of the spectrum.
For p = 1, it coincides with the traditional autocovariance func-
tion, whereas for p = −1 it yields the inverse autocovariance func-
tion, as k varies. The extension to any real power parameter p is
fruitful for many aspects of econometrics and time series analysis.
We focus in particular on model identification, time series cluster-
ing and discriminant analysis, the estimation of the spectrum for
cyclical time series, and on testing the white noise hypothesis and
goodness of fit.
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The underlying idea, which has a well established tradition in
statistics and time series analysis (Tukey, 1957; Box andCox, 1964),
is that taking powers of the spectral density function allows one to
emphasise certain features of the process. For instance, we illus-
trate that setting p > 1 is useful for the identification of spectral
peaks, and in general for the extraction of signals contaminated by
noise. Moreover, fractional values of p ∈ (0, 1) enable the defini-
tion of classes of white noise tests with improved size and power
properties, with respect to the case p = 1, as the finite sample
distribution can be made closer to the limiting one by the trans-
formation that is implicit in the use of the GACV. Finally, by solv-
ing a generalised Yule–Walker system of equations based on the
GACV, we can estimate a general spectral model that, according to
the value of p, encompasses both autoregressive and moving aver-
age spectral models.

For given stochastic processes the GACV can be analytically
evaluated in closed form in the time domain by constructing the
standard autocovariance function of an auxiliary stochastic pro-
cess, whoseWold representation is obtained from the original one,
by taking a power transformation of the Wold polynomial.

As far as estimation from a time series realisation is concerned,
we consider a nonparametric estimator based on the power trans-
formation of the pooled periodogram. For a given p, the estimator is
asymptotically normally distributed around the population value,
with a variance that depends on the GACV evaluated at 2p; as a
result, a consistent estimator of the asymptotic variance is readily
available. We also show that Bartlett’s formula generalises to any

http://dx.doi.org/10.1016/j.jeconom.2014.07.004
0304-4076/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jeconom.2014.07.004
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2014.07.004&domain=pdf
mailto:tommaso.proietti@uniroma2.it
mailto:alessandra.luati@unibo.it
http://dx.doi.org/10.1016/j.jeconom.2014.07.004


246 T. Proietti, A. Luati / Journal of Econometrics 186 (2015) 245–257

value of p. As a related result we derive the asymptotic distribution
of a ratio estimator of the GACF.

These results open the way to the application of the GACV for
the analysis of stationary time series. In addition to the possible
uses hinted above (model identification, testing for white noise,
and feature extraction), we consider the possibility of defining
measures of pairwise distance based on the GACV or GACF, encom-
passing the Euclidean and the Hellinger distances, and we illus-
trate their use for discriminant and cluster analysis of time series.
Negative values can be relevant as they nest the Euclidean and the
Hellinger distances based on the inverse autocorrelation functions.

The structure of the paper is the following. The GACV and
the GACF are formally defined in Section 2. The interpretation in
terms of the autocovariance function of a suitably defined power-
transformed process is provided in Section 3. This is used for the
analytical derivation of the GACV for autoregressive (AR) andmov-
ing average (MA) processes, as well as long memory processes
(Section 4). Estimation is discussed in Section 5. Sections 6–8 fo-
cus on three main uses of the GACV and the GACF. The first deals
with testing for white noise: two classes of tests, generalising the
Box and Pierce (1970) test and theMilhøj (1981) statistics, are pro-
posed and their properties discussed. It emerges that fractional val-
ues of p in the (0, 1) interval provide finite sample tests of the
white noise hypothesis with improved size properties. A gener-
alised Yule–Walker estimator of the spectrum based on the GACV
is presented in Section 7: in particular, the GACV for p > 1 will
highlight the cyclical features of the series; this property can be
exploited for the identification and estimation of spectral peaks.
We finally consider measures of distance between two stochastic
processes based on the GACV or GACF and we illustrate their use
for time series discriminant analysis. In Section 9 we provide some
conclusions and directions for future research.

2. The generalised autocovariance function

Let {xt}t∈T be a stationary zero-mean stochastic process indexed
by a discrete time set T , with spectral distribution function F(ω).
We assume that the spectral density function of the process
exists, F(ω) =

 ω
−π

f (λ)dλ, that it is positive, that the process is
regular (Doob, 1953, p. 564), i.e.

 π
−π

log f (ω)dω > −∞, and that π
−π

f (ω)pdω < ∞.
The generalised autocovariance (GACV) function is defined as

the inverse Fourier transform of the pth power of the spectral
density function,

γpk =
1
2π

 π

−π

[2π f (ω)]p cos(ωk)dω, (1)

where we have replaced exp(ıωk) by cos(ωk) since the spectral
density and the cosine are even functions while the sine function
is odd. Taking the Fourier transform of γpk gives

[2π f (ω)]p = γp0 + 2
∞
k=1

γpk cos(ωk). (2)

The coefficients γpk depend on two arguments, the integer lag k and
the real power p. As a matter of fact, for p = 1, γ1k = γk, the auto-
covariance of the process at lag k; for p = 0, γ0k = 0, for k ≠ 0 and
γ00 = 1, up to a constant, the autocovariance function of a white
noise process; for p = −1, γ−1k = γik, the inverse autocovariance
function (Cleveland, 1972; see also Battaglia, 1983).

Other examples where integrals of powers of the spectral den-
sity function are of relevant interest may be found in recent ad-
vances on probabilistic approximations to Gaussian processes. As
an example, for k = 0 and integer p > 0, the generalised vari-
ance gives the pth cumulant of the sample variance of a stationary

zero mean stochastic process (see Nourdin and Peccati, 2012, for-
mula 7.2.2). In turn, the cumulants enter in Berry–Esseen type
bounds for the distance between the normalised asymptotic dis-
tribution of the sample variance and the standard Gaussian distri-
bution (see Nourdin and Peccati, 2012, formulae 7.3.1 and 9.5.1,
which involve fractional powers of the generalised variance).

As defined in (1) and due to the Herglotz theorem, the GACV is
a true autocovariance (see also Section 3), and as such it inherits
all the well known properties of an autocovariance function: an
obvious property is symmetry with respect to the lag, γpk = γp,−k;
moreover, γp0 > 0 and |γpk| ≤ γp0, for all integers k. Non-negative
definiteness of the GACV follows from the assumptions on f (ω).
The generalised autocorrelation function (GACF) is defined as

ρpk =
γpk

γp0
, k = 0,±1,±2, . . . , (3)

taking values in [−1, 1].
Further relevant properties are nested in the following Lemma,

which is a consequence of the fact that the spectral density of
a convolution is the product of the spectral densities (see corol-
lary 3.4.1.1. in Fuller, 1996).

Lemma 1. Let γpk be defined as in (1). Then,

γp+q,k =
1
2π

 π

−π

[2π f (ω)]p+q cos(ωk)dω =

∞
j=−∞

γp,j+kγq,j. (4)

An important special case of Lemma 1, that will be exploited
later in the derivation of goodness of fit tests, relates theGACVwith
transformation parameter 2p to the GACV at p and is obtained by
setting p = q in Lemma 1:

γ2p,k =

∞
j=−∞

γpjγp,j+k, (5)

which for k = 0 specialises as

γ2p,0 = γ 2
p0 + 2

∞
j=1

γ 2
pj.

Furthermore, setting q = −p in Lemma 1, we obtain
∞

j=−∞

γpjγ−p,j−k = 1{k=0}, (6)

where 1{A} indicates the indicator function on the setA. Property (6)
extends thewell knownorthogonality between the autocovariance
function and the inverse autocovariance function (see Pourahmadi,
2001, Theorem 8.12).

3. The power process and its autocovariance function

The function γpk lends itself to a further interpretation as the au-
tocovariance function of a power process derived from xt . This in-
terpretation turns out to be useful in the derivation of the analytic
form of γpk, as a function of the parameters that govern the process
dynamics, by evaluating an expectation in the time domain, rather
than solving (1) directly.

Assuming that {xt}t∈T is purely non-deterministic, itsWold rep-
resentation will be written as

xt = ψ(B)ξt , (7)

where ξt ∼ WN(0, σ 2) and ψ(B) = 1 + ψ1B + ψ2B2
+ · · ·, with

coefficients satisfying


∞

j=0 ψ
2
j < ∞, and such that all the roots of

the characteristic equation ψ(B) = 0 are in modulus greater than
one; here, WN(0, σ 2) denotes a white noise process, a sequence of
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