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a b s t r a c t

We propose an extension of standard asymmetric volatility models in the generalized autoregressive
conditional heteroskedasticity (GARCH) class that admits conditional non-Gaussianities in a tractable
fashion. Our ‘‘bad environment–good environment’’ (BEGE)model utilizes two gamma-distributed shocks
and generates a conditional shock distribution with time-varying heteroskedasticity, skewness, and
kurtosis. The BEGE model features nontrivial news impact curves and closed-form solutions for higher-
order moments. In an empirical application to stock returns, the BEGE model outperforms asymmetric
GARCH and regime-switching models along several dimensions.
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1. Introduction

Since the seminal work of Engle (1982) and Bollerslev (1986)
on volatility clustering, thousands of articles have applied mod-
els in the generalized autoregressive conditional heteroskedastic-
ity (GARCH) class to capture volatility clustering in economic and
financial time series data. In the basic GARCH (1, 1) model, the
conditional variance is a deterministic function of the past condi-
tional variance and contemporaneous squared shocks to the pro-
cess describing the data. Nelson (1991) and Glosten et al. (1993,
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GJR henceforth),motivated by empiricalwork on stock return data,
provide important extensions, accommodating asymmetric re-
sponses of conditional volatility to negative versus positive shocks.
Engle and Ng (1993) compare the response of conditional variance
to shocks (‘‘news impact curves’’) implied by various econometric
models and find evidence that the GJR model fits stock return data
the best.

The original models in the GARCH class assumed Gaussian
innovations, but nonetheless imply non-Gaussian unconditional
distributions. However, time-varying volatility models with Gaus-
sian innovations generally do not generate sufficient unconditional
non-Gaussianity to match certain financial asset return data (see,
e.g. Poon and Granger, 2003). Additional evidence of conditional
non-Gaussianity has come from two corners. First, empirical work
by Evans and Wachtel (1993), Hamilton and Susmel (1994), Kim
and White (2004), and many others has documented conditional
non-Gaussianities in economic data. Second, in finance, a volumi-
nous literature on the joint properties of option prices and stock re-
turns (see, e.g. Broadie et al., 2009) has also suggested the need for
models with time-varying non-Gaussianities. In principle, one can
estimate GARCH models consistently using quasi maximum like-
lihood (see Lumsdaine, 1996; Hansen and Lee, 1994), not worry-
ing about modeling the non-Gaussianity in the shocks. However,
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fitting the actual non-Gaussianities in the data can lead tomore ef-
ficient estimates and may be important if the model is to be used
in applications (for example, option pricing or risk management)
that require an estimate of the conditional distribution. Several
authors have introduced non-Gaussian shocks in GARCH frame-
works (see, e.g., Bollerslev (1987) and Hsieh (1989), who used the
t-distribution, and Mittnik et al. (2002), who used shocks with a
distribution in the stable Paretian class). However, aswewill show,
extant models in this vein generally cannot fit time-varying non-
Gaussianities that are evident in the data.

We present an extension of models in the GARCH class that
accommodates conditional non-Gaussianity in a tractable fash-
ion, offering simple closed-form expressions for conditional mo-
ments. Our ‘‘bad environment–good environment’’ (BEGE) model
utilizes two gamma-distributed shocks that together imply a con-
ditional shock distribution with time-varying heteroskedasticity,
skewness, and kurtosis. This is accomplished by allowing the shape
parameters of the two distributions to vary through time. Hence,
our model features rich variation in higher-order moments. We
apply the model to stock returns, showing that the model out-
performs extant alternatives using a variety of specification tests.
In the stock market context, one shape parameter determines the
conditional distribution of the ‘‘good environment’’, with posi-
tive skewness and ‘‘good volatility’’; the other shape parameter
drives the ‘‘bad environment’’, with negative skewness and ‘‘bad
volatility’’. Of course, conditional non-Gaussian models exist out-
side the GARCH class that may also fit the data quite well. Regime-
switching models, in particular, have shown promise in many
applications. We therefore also estimate several types of regime-
switching models on our stock returns data sample and show that
the BEGE model significantly outperforms various models in this
class.

The remainder of the article is organized as follows. In Section 2,
we present the BEGE model, describe how it nests the standard
GJR–GARCH model as a special case, and present various models
in the regime-switching class. In Section 3, we describe the esti-
mation methodology and the specification tests that we conduct.
In Section 4,we confront severalmodels from the above classes, in-
cluding the BEGE model, with monthly US stock return data from
1929 through 2010.

2. The BEGE–GARCHmodel

Before introducing the BEGE model, we begin with a review of
the seminal GJR asymmetric GARCH model.

2.1. Traditional GJR–GARCH

Consider a time series rt+1 with conditional mean µt . The GJR
model assumes that the series follows

rt+1 = µt + ut+1,

ut+1 ∼ N (0, ht) ,

and ht = h0 + ρhht−1 + φ+u2
t Iut≥0 + φ−u2

t


1 − Iut≥0


. (1)

That is, the innovation to returns, ut+1, has time-varying con-
ditional variance, vart (rt+1) = ht , which is assumed to be a lin-
ear function of its own lagged value and squared innovations to
returns. One key feature of this model that enables it to better fit
many economic time series is the differential response of the con-
ditional variance of shocks following positive versus negative in-
novations. In stock return and economic activity data, it is typically
found thatφ− > φ+, indicating that negative shocks result inmore
of an increase in variance than do positive shocks.

Fig. 1. BEGE distribution tail properties.
This plot shows the 99th percentiles and 1st percentiles for two sequences of BEGE
distributions, which take the form.

ut+1 = ωp,t+1 − ωn,t+1; ωp,t+1 ∼ Γ 
pt , σp


; ωn,t+1 ∼ Γ (nt , σn) ,

where Γ denotes the centered gamma distribution. Throughout, we maintain that
σn = σp = 0.015. The lines of blue asterisks show the quantiles for distributions in
which pt is fixed at 1.5, but nt varies from 0.1 through 3.0. Conversely, the lines of
green plus symbols show the quantiles for distributions in which pt varies from 0.1
through 3.0 while nt is held fixed at 1.5.

2.2. BEGE–GJR–GARCH

The BEGE model that we propose relaxes the assumption of
Gaussianity by assuming that the ut+1 innovation consists of two
components. We assume that ωp,t+1, a good environment shock,
andωn,t+1, a bad environment shock, are drawn from ‘‘demeaned’’
(or ‘‘centered’’) gamma distributions that have a mean equal to
zero.2 The overall innovation is a linear combination of the two
component shocks, which are assumed to be conditionally inde-
pendent. The gamma distributions are assumed to have constant
scale parameters, but we let their shape parameters vary through
time. More precisely, the BEGE framework assumes:

ut+1 = σpωp,t+1 − σnωn,t+1, where

ωp,t+1 ∼ Γ (pt , 1) , and

ωn,t+1 ∼ Γ (nt , 1) , and (2)

whereΓ (k, θ) denotes a centered gamma distribution with shape
and scale parameters, k and θ , respectively. Thus, pt (nt ) is the
shape parameter for the good (bad) environment shock. Fig. 1 pro-
vides a visual representation of the flexibility of the BEGE distri-
bution. Plotted are the 1st and 99th percentiles of two sequences
of hypothetical distributions. The blue stars illustrate a series of
BEGEdistributions forwhich pt is fixed at 1.5, but nt varies from0.1
to 3.0, which are the values across the horizontal axis. The lower
line of blue asterisks shows the 1st percentiles of these distribu-
tions, while the upper line of blue stars shows the 99th percentiles.
Clearly, increases in nt have an outsized effect on the lower tail,
particularly at low values of nt . The upper tail is relatively insen-
sitive to changes in nt . The green plus symbols show results from
the complementary exercise: holding nt fixed at 1.5 and varying pt
from 0.1 through 3.0. Clearly pt impacts the upper tail of the dis-
tribution much more than it impacts the lower tail. These results

2 The centered gamma distribution with shape parameter k and scale parameter
θ , which we denote Γ (k, θ), has probability density function, φ (x) =

1
Γ (k)θk

(x + kθ)k−1 exp

−

1
θ

(x + kθ)

for x > −kθ , and with Γ (·) representing the

gamma function.
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