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a b s t r a c t

Nonparametric regression is developed for data with both a temporal and a cross-sectional dimension.
Themodel includes additive, unknown, individual-specific components and allows also for cross-sectional
and temporal dependence and conditional heteroscedasticity. A simple nonparametric estimate is shown
to be dominated by a GLS-type one. Asymptotically optimal bandwidth choices are justified for both
estimates. Feasible optimal bandwidths, and feasible optimal regression estimates, are also asymptotically
justified. Finite sample performance is examined in a Monte Carlo study.
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1. Introduction

The advantages of panel data have been exploited in many
econometric model settings, following the early and influential
contributions of Cheng Hsiao (see e.g. Hsiao, 1986). Much of the
literature stresses parametric regression and/or time trending
effects, alongside unknown individual effects. Nonparametric
models lessen the risk of misspecification and can be useful in
relatively large data sets, and have already featured in panel set-
tings. Ruckstuhl et al. (2000) asymptotically justified nonpara-
metric regression estimation when time series length T increases
and cross-sectional size N is fixed, and there is no cross-sectional
dependence. When allowing possible dependence in either time
or cross-sectional dimension (or both), the question of efficiency
improvement via utilizing correlation structure arises naturally.
Carroll et al. (2003) and Wang (2003) explored the possibility of
efficiency gain in nonparametric regression estimation by exploit-
ing temporal correlation but under cross-sectional independence;
Henderson et al. (2008) estimated nonparametric and partly linear
regressions with additive individual effects; Evdokimov (2010)
considered identification and estimation in nonparametric regres-
sion with nonadditive individual effects; Li et al. (2011) stud-
ied nonparametric time-varying coefficient panel data models;
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(P.M. Robinson).

Hoderlein et al. (2011) considered nonparametric binary choice
models with fixed effects; Koerber et al. (forthcoming) dealt with
nonparametric regression model with individual and time fixed
effects, where the regression function can vary across individ-
uals; under temporal independence, Robinson (2012) efficiently
estimated a nonparametric trend in the presence of possible cross-
sectional dependence.

The present paper considers efficiency improvement where
the nonparametric regression is a function of a possibly vector-
valued observable stationary sequence that is common to all cross-
sectional units, addressing similar issues as Robinson (2012). As
in that paper, T is assumed large relative to N , as can be rele-
vant when the cross-sectional units are large entities such as coun-
tries/regions or firms. Disturbances may exhibit cross-sectional
dependence due to spillovers, competition, or global shocks, and
such dependence, of a general and essentially nonparametric na-
ture, is allowed.We describe an observable array Yit , i = 1, . . . ,N ,
t = 1, . . . , T , by

Yit = λi + m(Zt)+ Uit , i = 1, . . . ,N, t = 1, . . . , T , (1)

where the λi are unknown nonstochastic individual fixed effects,
Zt is a q-dimensional vector of time-varying stochastic regressors
that are common to individuals,m is a nonparametric function, and
Uit is an unobservable zero-mean array. The common trend model
of Robinson (2012) replaced Zt by the deterministic argument t/T .
He showed how to improve on simple estimates of m by general-
ized least squares (GLS) ones using estimates of the cross-sectional
variance matrix of Uit . Employing instead a stochastic Zt requires
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somewhat different methodology and substantially different
asymptotic theory and admits the possibility of conditional het-
eroscedasticity of Uit . Furthermore, though he discussed impli-
cations of serial dependence in Uit , Robinson (2012) assumed
temporal independence; we allow Uit to be a weakly dependent
stationary process with nonparametric autocorrelation. In addi-
tion, whereas Robinson (2012) focused on mean squared error
(MSE) properties, we also establish asymptotic normality of es-
timates of m. Throughout, asymptotic theory is with respect to
T → ∞,with eitherN → ∞ slowly relative to T , orN fixed.When
N is fixed, themodel can be considered a nonparametric seemingly
unrelated regression. We discuss restrictions on the rate at which
N is allowed to growwith T when relevant, see later in Theorems 6
and 7.

While (1) is of practical interest in itself, it can be more broadly
motivated from a semiparametric model involving also time-
varying, individual-specific regressors. For example, if Yit denotes
a house price index of Eurozone countries, Zt the interest rate set
by the European Central Bank, and Xit country-specific covariates
(such as GDP, inflation and stockmarket index), consider the partly
linear specification

Yit = λi + X ′

itγ + m(Zt)+ Uit . (2)

For a generic array {ςit}, t = 1, . . . , T , i = 1, . . . ,N , denote for
temporal, cross-sectional, and overall averages

ς̄At =
1
N

N
j=1

ςjt , ς̄iA =
1
T

T
s=1

ςis,

ς̄AA =
1
TN

N
j=1

T
s=1

ςjs,

(3)

and put ς̌it = ςit − ς̄At − ς̄iA + ς̄AA. We can thence transform (2) to

Y̌it = X̌ ′

itγ + Ǔit . (4)

Denoting byγ an estimate of γ obtained from (4) by, for example,
least squares, at a rate that can be faster under suitable conditions
than the nonparametric rate for estimation of m (see e.g. Moon
and Phillips, 1999) the methods developed in the paper should be
justifiable with Yit in (1) replaced by Yit − X ′

itγ .
The plan of the paper is as follows. The following section in-

troduces a simple kernel estimate of m and presents its asymp-
totic MSE and the consequent optimal choice of bandwidth, and
establishes its asymptotic normality. Section 3 presents infeasible
generalized least squares (GLS) estimate of m using the unknown
cross-sectional covariance matrix of Uit , with asymptotic proper-
ties. In Section 4 feasible GLS estimate of m is justified. Section 5
presents a small Monte Carlo study of finite sample performance.
Proofs of theorems are provided in Appendix A, while Appendix B
contains someuseful lemmas, ofwhich Lemma6 constitutes an ad-
ditional contribution in offering a decomposition of U-statistics of
order up to 4, under serial dependence.

2. Simple non-parametric regression estimation

We can write (1) in N-dimensional vector form as

Y·t = λ+ m(Zt)1N + U·t , t = 1, . . . , T , (5)

where Y·t = (Y1t , . . . , YNt)
′, λ = (λ1, . . . , λN)

′, 1N = (1, . . . ,
1)′,U·t = (U1t , . . . ,UNt)

′, the prime denoting transposition. In (1),
λi and m are identified only up to a location shift. As in Robinson
(2012), the (arbitrary) restriction

N
i=1

λi = 0 (6)

identifies m up to vertical shift and leads to

ȲAt = m(Zt)+ ŪAt . (7)

(See Lin et al., 2014 for an alternative identification condition
when the λi are stochastic.) From (7), we can nonparametrically
estimate m using the time series data (ȲAt , Z ′

t ). We employ the
Nadaraya–Watson (NW) estimate

m̃(z) =
m̃n(z)
m̃d(z)

,

where the numerator and denominator are given by

m̃n(z) =

T
t=1

K
Zt − z

a


ȲAt , m̃d(z) =

T
t=1

K
Zt − z

a


,

a is a positive bandwidth, and

K(u) =

q
j=1

k(uj), u = (u1, u2, . . . , uq)
′, (8)

where k is a univariate kernel function. More general, non-
product choices of K , and/or a more general diagonal or non-
diagonal matrix-valued bandwidth, could be employed in practice
but (8) with a single scalar bandwidth affords relatively simple
conditions. Let Kℓ, ℓ ≥ 1, denote the class of even k satisfying

R
k(u)du = 1,


R
uik(u)du = 0, i = 1, . . . , ℓ− 1,

0 <


R
uℓk(u)du < ∞, sup

u
(1 + |u|ℓ+1)|k(u)| < ∞.

We introduce regularity conditions on Zt , Uit similar to those
employed in the pure time series case by Robinson (1983) and in
subsequent references.

Assumption 1. For all sufficiently large i, (Z ′
t ,U1t , . . . ,Uit)

′ is
jointly stationary and α-mixing with mixing coefficient αi(j), and
for some µ > 2, α(j) = limi→∞αi(j) satisfies
∞
j=n

α1−2/µ(j) = o(n−1), as n → ∞.

Assumption 1 is from Robinson (1983) and imposes a mild
restriction on the rate of decay in the strong mixing coefficient.

Assumption 2. For all i ≥ 1, t ≥ 1, E(Uit |Zt) = 0 almost surely
(a.s.).

Assumption 3. Zt has continuous probability density function
(pdf) f (z).

Assumption 4. f (z) and m(z) have bounded derivatives of total
order s.

Assumption 5. The functions ωij(z) = E(UitUjt |Zt = z), i, j =

1, 2, . . . , are uniformly bounded and continuous.
Strictly, these and other assumptions need to hold only at those

z at whichm is to be estimated, but for simplicity we present them
globally.

Assumption 6. k(u)∈Ks, where s ≥ 2.

Assumption 7. As T → ∞, a + (Taq)−1
→ 0.

Let fj(z, u) denote the joint pdf of (Zt , Zt+j), j ≠ 0, and fj,k(z, u, w)
denote the joint pdf of (Zt , Zt+j, Zt+j+k), j ≠ 0, j + k ≠ 0. Denote
by C a generic positive finite constant.
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