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a b s t r a c t

An important component in dynamic discrete choicemodels and dynamic discrete games is the transition
density of state variables from the current period to the next period. Most empirical dynamic discrete
choice models identify the theoretical time interval in the behavioral model with that observed in the
data set. However, many empirical data sets are time aggregated. In this paper, we show that when
the time interval in the behavioral theory model differs from that in the observed data, difficulties with
nonparametric identification and specification arise. In addition, we study the properties of parametric
maximum likelihood estimators and flexible semiparametric estimators of the transition density in
dynamic discrete models with time aggregated data sets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In dynamic discrete choice models and discrete games, devel-
oped in Rust (1987) and Hotz and Miller (1993), agents solve an
optimal dynamic action as a function of the current state variables.
The state variables evolve according to a law of motion that also
depends on the actions by the agents. A recent literature general-
izes to dynamic games and develops nonparametric identification
results and flexible semiparametric estimators, including contri-
butions from, among others, Bajari et al. (2007), Aguirregabiria and
Mira (2007), Berry et al. (2003), Pesendorfer and Schmidt-Dengler
(2010), Jenkins et al. (2004),Magnac and Thesmar (2002), Kasahara
and Shimotsu (2008), Hu and Shum (2012), Arcidiacono andMiller
(2011), Norets (2009), Imai et al. (2009) and Bajari et al. (2009).

A potential important issue in empirically estimating dynamic
discrete choicemodels is that there is often a discrepancy between
the frequency of observations in the data set and the decision
frequency in the behavior model. Often times individual behaviors
are reported in prespecified time intervals in each data set. This
can be daily, monthly, quarterly or annually. For example, the
Health and Retirement Survey was conducted once every two
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years. This requires that a researcher adapts the frequency of
the decision making in the dynamic discrete choice model to the
observed time intervals reported in the data set (Fang and Wang,
2010). Such an approach will lead to inconsistent estimates of the
utility parameters when the decision time model is misspecified.
Other applications of dynamic discretemodels include Rust (1987),
Jenkins et al. (2004) and Ryan (2012).

Exceptions are Doraszelski and Judd (2012) and Arcidiacono
et al. (2012),who formulate and estimate continuous timedynamic
discrete models. In this paper we consider equal-spaced discrete
timemodels, inwhich the data frequency is coarser than themodel
frequency. Our results complement those in Blevins (2013, 2014),
who provide identification results for continuous time models
using discretely observed data using the logarithmic root of the
discrete time state transition matrix.

The structural parameters in a dynamic discrete choice model
include the discount rate, the error distribution, the period util-
ity function and the state variable transition density. When the
discount rate and the error distribution are known as is conven-
tionally assumed in the literature, the dynamic discrete model is
exactly identified. In particular, the state variable transition den-
sity is directly identified and can be estimated from the data. The
period utility function can then be recovered from the reduced
form choice probabilities under a set of exclusion restrictions.

These results no longer hold when only time aggregated data
is available where the data frequency differs from the model
frequency. With time aggregated data, only multi-period state
variable transition density can be directly identified and recovered
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from the data set. Multi-period transition density, however, is a
convoluted function of the single-period transition density and
the conditional choice probabilities of actions as a function of the
state variables. The inversemapping of this relationmight not exist
or might admit multiple solutions. As a consequence, the single
period state transition density can be either correctly specified
and identified, or misspecified, or unidentified. Even when the
populationmodel is correctly specified, nonparametricmethods of
identification and estimation that are applicable for disaggregated
time data still cannot be applied directly to aggregate time data
sets.

Parametric and semiparametric maximum likelihood methods
can be applied to aggregated time datawhen the populationmodel
is correctly specified and identified. We discuss the adaptation of
the estimation methods for dynamic discrete models developed
in Rust (1987) and Hotz and Miller (1993) to time aggregate data
sets, and present their statistical and computational properties.
The EM algorithm (Arcidiacono and Jones, 2003; Arcidiacono and
Miller, 2011) can be utilized to efficiently compute the MLE
estimators. We find that an estimator based on aggregated time
data might achieve more statistical efficiency than an estimator
based on regularly spaced observations. Numerical simulations
show that the performance of likelihood based estimators in finite
samples accords with the predictions of the asymptotic theory.

2. Model and data

We consider a stationary dynamic environment. Let t = 0, 1,
. . . , ∞ denote time. The notations to be introduced below will
apply to both single agent dynamic discrete choice settings and
multi-agent dynamic discrete games with n agents, in which case
the decision making of forward looking rational agents is assumed
to be consistent with a dynamic program as in Rust (1987) or a
Markov perfect dynamic equilibrium.

In each time period t , agent j chooses an action ajt from A =

{1, . . . , L}. Its observed state variable is denoted by xjt , taking the
value from a finite set of X = {0, 1 · · · K}. Further, let at =

(ajt , ∀j) ∈ Am and xt = (xjt , ∀j) ∈ Xm be the action and state pro-
file vectors of all agents. Also let a−j be a vector of strategies for all
players excluding j, and similarly for x−j. While xjt can be perfectly
observed by both the agents and the econometrician subject to the
data periodicity to be discussed below, there is a set of unobserved
state variable ϵjt(ajt) observable only by agent j as private informa-
tion. Throughout the paper we maintain the conventional condi-
tional independence and distribution assumptions following Rust
(1987).

Assumption 1. The error terms ϵjt(ajt) are identically and inde-
pendently distributed across t , j and ajt and follow Type I extreme
value distribution.

Assumption 2. Conditional on xt and at , xt+1 is independent of ϵt .

The complete state variable of agent j at time t is sjt =

(xjt , ϵjt). In each period agent j derives utility uj(at , xt , ϵjt) =

Πj(ajt , a−jt , xt; θu) + ϵjt(ajt). The period mean utility function
Πj(ajt , a−jt , xt; θu) is described by a parameter vector θu, which
includes the nonparametric specification as a special case when
the state variables are discrete. Agents are forward looking with
a given discount rate β . In equilibrium, they choose best response
ajt for a given xt and ϵjt to maximize a discounted sum of expected
future utility functions,

E


∞

τ=0

βτuj(at+τ , xt+τ , ϵt+τ )|ajt , xt , ϵjt


. (1)

The Markov perfect equilibrium conditional choice probabilities
σj(aj|x) are obtained by integrating out ϵjt in the optimal response
function ajt(xt , ϵjt).

Because of the private information assumption, the dynamic
discrete game is observationally equivalent to a single agent dy-
namic discretemodel, inwhich the period expected utility function
of agent j is given by Πj(aj, x) =


a−j∈A−j

Πj(aj, a−j, x)σ−j(a−j|x),
and inwhich agent j follows the Bellman principle of stochastic dy-
namic programming

Wj(xt , ϵjt; σ−j) = max
ajt∈A


Πj(ajt , xt) + ϵjt + β


x′,ϵ′

Wj(x′, ϵ′
; σ−j)

× dF(x′, ϵ′
|ajt , xt , ϵjt)


,

where the value function for player j,Wj(·, ·; σ−j), is defined as the
fixed point of the above functional equation.

Because of Assumptions 1 and 2, the Bellman principle can be
expressed through a choice specific value function Vj(aj, x) defined
as

Vj(aj, x) = Πj(aj, x; θu) + β


x′
Vj(x′)dF(x′

|aj, x), (2)

where the social surplus function or ex ante value function is defined
by

Vj(x) =


Wj(x, ϵj; σ)f (ϵj)dϵj.

Under Assumption 1, the social surplus function is in turn
related to the choice specific value functions through the following
relation

Vj(x) = G(Vj(aj, x), ∀aj) ≡ log
L

ai=0

exp(Vj(aj, x)). (3)

In a Markov perfect equilibrium of a discrete game, the transi-
tion distribution of the observed state variables satisfies, by condi-
tional independence

F(xt+1|ajt , xt , ϵjt) = F(xt+1|ajt , xt)

=


a−jt

g(xt+1|xt , ajt , a−jt) · σ−j(a−jt |xt),

where g(xt+1|xt , ajt , a−jt) denotes the single period conditional
density of the next period state variables given the current state
variables and actions. In the following, we will focus on a sin-
gle agent dynamic model with infinite horizon and stationarity in
which j = 1, . . . , n denotes individuals operating in n independent
markets.

Estimation of a dynamic discrete choice model requires a cross
section of observations on the choice profile and state variables
(at , xt), which provides information about the conditional choice
probabilities p(at |xt), and data that can be used to recover the
transition density of the observed state variables F(xt+1|ait , xt , ϵit).
In a typical stationary model in which the frequency of data
availability coincides with the model decision frequency, this is
given by the conditional distribution of xt+1 given at and xt . We
denote a balanced panel data of non time aggregated data set by

D = {(ai,0, xi,0), (ai,1, xi,1), . . . , (ai,T , xi,T )}1≤i≤n.

Instead of this conventional setting, in the rest of the paper we
focus on time aggregated data inwhich the data frequency is coarser
than the model frequency. In the model, time increments by each
period. However, data is only available in every r periods. In other
words, for r ≥ 1, we assume availability of only a balanced time
aggregated panel of observations

Dr = {(ai,0, xi,0), (ai,r , xi,r), . . . , (ai,Mr , xi,Mr)}1≤i≤n



Download English Version:

https://daneshyari.com/en/article/5095879

Download Persian Version:

https://daneshyari.com/article/5095879

Daneshyari.com

https://daneshyari.com/en/article/5095879
https://daneshyari.com/article/5095879
https://daneshyari.com

