
Journal of Econometrics 184 (2015) 37–61

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Robust score and portmanteau tests of volatility spillover
Mike Aguilar, Jonathan B. Hill ∗
Department of Economics, University of North Carolina at Chapel Hill, United States

a r t i c l e i n f o

Article history:
Received 27 March 2012
Received in revised form
1 September 2014
Accepted 1 September 2014
Available online 16 September 2014

JEL classification:
C13
C20
C22

Keywords:
Volatility spillover
Heavy tails
Tail trimming
Robust inference

a b s t r a c t

This paper presents a variety of tests of volatility spillover that are robust to heavy tails generated by
large errors or GARCH-type feedback. The tests are couched in a general conditional heteroskedasticity
framework with idiosyncratic shocks that are only required to have a finite variance if they are
independent. We negligibly trim test equations, or components of the equations, and construct heavy
tail robust score and portmanteau statistics. Trimming is either simple based on an indicator function, or
smoothed. In particular, we develop the tail-trimmed sample correlation coefficient for robust inference,
and prove that its Gaussian limit under the null hypothesis of no spillover has the same standardization
irrespective of tail thickness. Further, if spillover occurs within a specified horizon, our test statistics
obtain power of one asymptotically. We discuss the choice of trimming portion, including a smoothed
p-value over a window of extreme observations. A Monte Carlo study shows our tests provide significant
improvements over extantGARCH-based tests of spillover, andwe apply the tests to financial returns data.
Finally, based on ideas in Patton (2011) we construct a heavy tail robust forecast improvement statistic,
which allows us to demonstrate that our spillover test can be used as a model specification pre-test to
improve volatility forecasting.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A rich literature has emerged on testing for financial market as-
sociations, spillover and contagion, and price/volume relationships
during volatile periods (King et al., 1994; Karolyi and Stulz, 1996;
Brooks, 1998; Comte and Lieberman, 2000; Hong, 2001; Forbes
and Rogibon, 2002; Caporale et al., 2005, 2006). Similarly, evidence
for heavy tails across disciplines is substantial, with a large array
of studies showing heavy tails and random volatility effects in fi-
nancial returns. See Campbell and Hentschel (1992), Engle and Ng
(1993), Embrechts et al. (1999); Longin and Solnik (2001), Finken-
stadt and Rootzen (2003), and Poon et al. (2003).

The ability to detect volatility spillovers among asset prices
has myriad uses in macroeconomics and finance. For policy mak-
ers, knowledge of spillovers may inform policy design (King et al.,
1994; Forbes and Rogibon, 2002). For investors, knowledge of
spillovers may lead to improved volatility forecasts, which can be
embedded inside asset pricing models. Similarly, spillovers might
capture information transmission, as per Engle et al. (1990), or the
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spillover effects can be used to design conditional hedge ratios
(Chang et al., 2011).

Non-correlation based methods have evolved in response to
mounting evidence for heavy tails and heteroskedasticity in finan-
cial markets, including distribution free correlation-integral tests
(Brock et al., 1996; de Lima, 1996; Brooks, 1998), exact small sam-
ple tests based on sharp bounds (Dufour et al., 2006), copula-based
tests (Schmidt and Stadtmüller, 2006), and tail dependence tests
(Davis and Mikosch, 2009; Hill, 2009; Longin and Solnik, 2001;
Poon et al., 2003; Malevergne and Sornette, 2004).

1.1. Proposed methods

In this paper, rather than look for new dependence measures,
we exploit robust methods that allow for the use of existing
representations of so-called volatility spillover or contagion1 where

1 There is some consensus in the applied literature on the use of the terms
‘‘spillover’’ versus ‘‘contagion’’ in financial markets: spillover concerns ‘‘usual’’
market linkages and contagion suggests ‘‘unanticipated transmission of shocks’’
(e.g. Beirne et al., 2008, p. 4). We simply use the term ‘‘spillover’’ for convenience
and in view of past usage in the volatility literature (e.g. Cheung and Ng, 1996;
Hong, 2001). Since we allow for very heavy tails in the errors, our contributions
arguably also apply to the contagion literature since such noise renders anticipating
linkages exceptionally difficult.
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idiosyncratic shocks may be heavy tailed. We use a general model
of conditional heteroskedasticity, and deliver test statistics with
standard limit distributions under mild regularity conditions.

Let {y1,t , y2,t} be a joint process of interest with conditionally
heteroskedastic coordinates:
yi,t = hi,t(θi)ϵi,t(θi) where θi ∈ Rq q ≥ 1. (1)
We assume there exists a unique point θ0i in the interior of a
compact subset Θ ⊂ Rq such that {yi,t , hi,t(θ

0
i )} is stationary and

ergodic, and E[ϵi,t(θ
0
i )] = 0 and E[ϵ2i,t(θ

0
i )] = 1. Now drop θ0i

and write hi,t = hi,t(θ
0
i ) and ϵi,t = ϵi,t(θ

0
i ). Volatility hi,t(θi) is

measurable with respect to {yi,t−1, yi,t−2, . . .}, continuous and
differentiable on Θ , and bounded infθ∈Θ{hi,t(θi)} > 0 a.s. An
example of (1) is nonlinear GARCH(1, 1) h2

i,t = g(yi,t , h2
i,t−1, θ

0
i )

where g(·, ·, θi) is continuous (see Francq and Zakoïan, 2010). We
restrict attention to models where random volatility h2

i,t satisfies

E


sup
θi∈N0

 ∂∂θi ln h2
i,t(θi)

2

< ∞

on some compact subset N0 ⊆ Θ containing θ0i . (2)
Condition (2) simplifies technical arguments, but it can be relaxed
at the expense of lengthier proofs. Since we want to allow for
heavy tailed ϵi,t , notice (2) in general implies h2

i,t is stochastic,
since otherwise for many models (∂/∂θ) ln h2

i,t(θ)|θ=θ0i
is square

integrable only if E[ϵ4i,t ] < ∞ (Francq and Zakoïan, 2004, 2010).
This allows us to avoid boundary issues for estimating θ0i (for the
GARCH case, see Andrews (2001)). In the standard GARCH model
h2
i,t = ω0

i + α0
i y

2
i,t−1 + β0

i h
2
i,t−1 with ω0

i > 0, for example, if
α0
i + β0

i > 0 then (2) holds (cf. Francq and Zakoïan, 2004), while
in general (2) covers linear, Quadratic, GJR, Smooth Transition,
Threshold, and Asymmetric GARCH, to name a few. See Engle and
Ng (1993); Glosten et al. (1993); Sentana (1995) and Francq and
Zakoïan (2010). It is only amatter of notation to allow even greater
model generality, including nonlinear ARMA–GARCH and other
volatility models (e.g. Meddahi and Renault, 2004).

Cheung and Ng (1996) and Hong (2001) work with a lin-
ear GARCH model h2

i,t = ω0
i + α0

i y
2
i,t−1 + β0

i h
2
i,t−1 and argue

volatility spillover reduces to testing whether y21,t/h
2
1,t − 1 and

y22,t−h/h
2
2,t−h − 1 are correlated for some lag h ≥ 1, where ϵi,t is

assumed to be serially independent. Hong (2001) proposes a stan-
dardized portmanteau statistic to test for spillover at asymptoti-
cally infinitely many lags, and requires E[ϵ8i,t ] < ∞, although yi,t
may be IGARCH or mildly explosive GARCH, as long as yi,t is sta-
tionary.

The assumption of thin tails is not unique to these works since
volatility spillover and contagion methods are typically designed
under substantial moment conditions. Forbes and Rogibon (2002)
implicitly require VAR errors to have a fourth moment; Capo-
rale et al. (2005) exploit QML estimates for a GARCH model and
therefore need at least E[ϵ4i,t ] < ∞, cf. Francq and Zakoïan
(2004). Despite the fixation on thin-tail assumptions, in applica-
tions there appears to be little in the way of robustness checks, or
pre-tests to verify the required moment conditions. See especially
de Lima (1997) and Hill and Aguilar (2013). Dungey et al. (2005),
for example, study an array of sampling properties of tests of con-
tagion and spillover, but do not treat heavy tails. In Section 6, how-
ever, we show a variety of asset return series have conditionally
heteroskedastic components with errors ϵi,t that may have an un-
bounded fourth moment.

Our approach is similar to Cheung and Ng (1996) and Hong
(2001). We construct centered squared errors from the volatility
function hi,t(θi),

Ei,t(θi) ≡
y2i,t

h2
i,t(θi)

− 1 = ϵ2i,t(θi)− 1 and Ei,t = Ei,t(θ
0
i )

and build test equations over H lags:

mt(θ) =

mh,t(θ)

H
h=1 =


E1,t(θ1)× E2,t−h(θ2)

H
h=1 , H ≥ 1,

and mt = mt(θ
0).

Under the null of no spillover we have E[mh,t ] = E[(ϵ21,t − 1)
(ϵ22,t−h − 1)] = 0. The conventional assumption E[m2

h,t ] < ∞

requires E[ϵ4i,t ] < ∞ if ϵ1,t and ϵ2,t are mutually independent,
while E[ϵ8i,t ] < ∞ is imposed to ensure consistency of estimated
higher moments E[m2

h,t ] given the presence of a plug-in for θ0.
We conquer the problem of possibly heavy tailed non-iid

shocks ϵi,t by transforming mt(θ), Ei,t(θi) or ϵi,t(θi). First, since
mh,t(θ) is asymmetrically distributed about zero in general, we
need an asymmetric transform to ensure both identification of
the hypotheses and a standard distribution limit (cf. Hill, 2012,
2014a;Hill andAguilar, 2013).We therefore focus on tail-trimming
mh,t(θ)I(−l ≤ mh,t(θ) ≤ u) for a robust score test,where I(·) is the
indicator function, l and u are positive thresholds, and l, u → ∞

as the sample size T → ∞. In general, this does not allow a port-
manteau statistic even if ϵi,t are iid, and may still lead to small
sample bias that arises from trimming. Further, if l and u are fixed
asymptotically then, in general, asymptotic bias in the test statis-
tic prevents a score statistic from detecting spillover. By negligi-
ble trimming, however, we can obtain both an asymptotic chi-
squared distribution under the null and correctly identify spillover.
In principle other transformations can be used, including those
discussed below for our portmanteau tests, but the need for asym-
metry and negligibility makes tail-trimming an appealing and
practical choice.

Our second and third approaches transform Ei,t(θi) and ϵi,t(θi),
respectively, leading to robust score and portmanteau statistics.
Small sample bias is eradicated by recentering the transformed
variables. We use a class of bounded transformations ψ : R ×

[0,∞) → R, |ψ(u, c)| ≤ c , including the so-called redescending
functions, which generate decreasing or vanishing values far from
a threshold c , e.g. ψ(u, c) = 0 if |u| > c . We say ψ is symmetric
if ψ(−u, c) = −ψ(u, c), and we say the transformation ψ or
threshold c is negligiblewhen limc→∞ ψ(u, c) = u such that there
is no transformation asymptotically. We assume symmetry and
negligibility throughout.

Redescenders are popularly used in the outlier robust esti-
mation literature where an extreme value is considered aber-
rant. See Andrews et al. (1972), Hampel et al. (1986), and
Jureckova and Sen (1996) for classic treatments, and for use in
M-estimation see Kent and Tyler (1991); Shevlyakov et al. (2008)
and Hill (2013b, 2014a). Examples of popularly used symmetric
transforms ψ are simple trimming uI(|u| ≤ c), Tukey’s bisquare
u(1 − (u/c)2)2I(|u| ≤ c), exponential u exp{−|u|/c}I(|u| ≤ c),
and truncation sign{u}min{|u|, c}. Notice only the first three are
redescenders.

By recenteringψ(Ei,t(θi), c)−E[ψ(Ei,t(θi), c)]orψ(ϵ2i,t(θi), c)−
E[ψ(ϵ2i,t(θi), c)] we can always use a symmetric transformation
which is intrinsically easier to implement. Moreover, if ϵ1,t and
ϵ2,t−h are independent under the null then ψ does not need to
be redescending, nor even negligible in the sense that c may be
bounded, since the null hypothesis is identified with any bounded
ψ or any c . This allows for great generality in terms of possible Q -
statistic constructions, and as a bonus ensures infinitesimal robust-
ness when c is fixed. In order to conserve space, we do not formally
treat data contamination in this paper. See Section 1.2 for further
discussion. In practice, however, unless we know the error distri-
bution for a simulation based bias correction or to model the bias
(e.g. Ronchetti and Trojani, 2001; Mancini et al., 2005), only negli-
gibility c → ∞ as T → ∞ ensures we capture spillover E[mh,t ] ≠

0 when it occurs. For example, we can always use simple trim-
ming uI(|u| ≤ c) or the exponential u exp{−|u|/c}I(|u| ≤ c) with
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