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1. Introduction

This paper proposes a new family of frequency-domain tests for
the white noise hypothesis, the assumption that a process is un-
correlated. Frequency-domain tests take as their starting point the
result that, under stationarity conditions, the linear dependence
structure of a process {y;} is fully captured by its spectral density
function S, (f). We focus our attention on the relation between the
spectral density function and the variance,

1/2
var(y) = 2/ Sy(f) df,
0

which, paraphrasing, says that the contribution of the frequencies
in a small interval Af containing f is approximately S, (f) Af. It is
an elementary result that - when defined - the spectral density
function of an uncorrelated process is constant or, in other words,
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that each frequency contributes equally to the variance of a white
noise process; instead, when a process is serially correlated, each
frequency generally contributes in different amounts and the spec-
tral density function is non-constant.

Such contrast is the basis for the tests developed in this paper.
Imagine that {y;} is a Gaussian white noise process (Fig. 1, left
panel). Then high frequencies, say those in the band [1/4, 1/2],
will contribute exactly half of the total variance of {y;}. On the
other hand, if {y;} is an autoregressive process of order 1 with a
positive coefficient (right panel), high frequencies will account for
less than half of the total variance. This example motivates the
introduction of the variance ratio &(a, b), defined as the ratio of
the total variance contributed by the frequency band (a, b). Under
the null of no serial correlation, & (a, b) is equal to the length of the
interval (a, b) and any departure from this benchmark provides the
means to detect serial correlation.

Although the variance ratio can be defined for an arbitrary
frequency domain, the need to estimate the corresponding integral
of the spectral density function - the numerator of & - imposes
practical limitations. We resort to wavelet analysis to address this
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White Noise: €, ~ iidN(0,1)
Se(f)

AR(1): y = 0.6€,—1 + €, € ~ iidN(0,1)
Sy(f)
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Fig. 1. High frequency contribution (in gray) to the total variance of a white noise process (left) and an AR(1) process (right).

need. For frequency bands of a particular form, the numerator of
the statistic & is a well known quantity, the wavelet variance,!
which can be estimated efficiently using the maximum-overlap
discrete wavelet transformation estimator. In this light, given the
temporal resolution properties of the wavelet transform, it is
appropriate to refer to &(a, b) as a multiscale variance ratio. The
recursive application of this procedure generates a family of tests
whose joint limit distribution is multivariate normal under mild
restrictions.

While the main intuition behind multiscale variance ratios
originates under covariance stationarity assumptions, the corre-
sponding test statistics are informative in more general scenarios.
Indeed, the null hypothesis can be relaxed to allow for a degree of
non-stationarity, specifically, for heteroskedastic white noise. Het-
eroskedastic white noise is an uncorrelated process with varying
variance. We develop the asymptotic theory of multiscale variance
ratios for uncorrelated but possibly dependent processes within
the framework of near-epoch dependence (NED). Besides accommo-
dating heterogeneity, there are three further benefits of this ap-
proach. Firstly, the asymptotic results originate from one of the
most general Gaussian central limit theorems for dependent pro-
cesses (De Jong, 1997). Secondly, it permits trending higher mo-
ments (see Assumptions A and B1). Finally, it leverages a rich
literature devoted to the derivation of the NED property for many
nonlinear time series models and, thus, parametric restrictions for
the validity of our test can be obtained in several typical cases.?

We contribute to the literature on tests for serial correlations in
several ways. First, the design we propose leads to serial correla-
tion tests with desirable empirical size and power in small samples.
Second, as argued in the previous paragraph, our test is robust to
the presence of higher order dependence, heteroskedasticity, and
trending moments, while at the same time the asymptotic theory
is developed in great generality. Third, ours is the first test of serial
correlation that directly utilizes the wavelet coefficients of the ob-
served time series to construct the wavelet-based test statistics.?
The tests we design generalize, on the one hand, variance ratios
tests (Lo and MacKinlay, 1988), and on the other, they are related
to ratios of quadratic forms and Von Neumann ratios (1941). In ad-
dition, since the proposed test statistic does not rely on a point esti-
mate of the spectral density, the rate of convergence issues relating

1 The wavelet variance was studied, among others, by Allan (1966), Percival
(1983), Percival and Guttorp (1994), Percival and Percival (1983), and Howe and
Percival (1995).

2 These results include GARCH, IGARCH, FIGARCH, ARCH(o0) (Davidson, 2004),
ARMA, Bilinear models, switching and threshold autoregressive models, and
smooth nonlinear autoregressions (Davidson, 2002).

3 This approach was originally put forth by Fan and Gengay (2010) in unit root
testing. Within a similar framework, Xue et al. (2014) propose discrete wavelet-
based jump tests to detect jump arrival times in high frequency financial time series
data.

to the nonparametric spectral density are not of the first order of
importance.

One of the well-known time-domain portmanteau tests for se-
rial correlation is the Box and Pierce test Q¢ (BP). Given inde-
pendent and identically distributed observations, Box and Pierce
(1970) show that the sum of K sample autocovariances times the
number of observations is approximately distributed as a Chi-
squared distribution with K degrees of freedom; statistically large
values of Qy indicate a likely serial correlation among the data. In
practice, the strict restriction of independence and homogeneity
is violated, possibly leading to a very inaccurate inference. There
is a long streak of papers that address these limitations, starting
from the small sample improvements of Ljung and Box (1978), to
the more recent robustification program of Lobato (2001) and Lo-
bato et al.(2002). Robust inference can also be achieved using boot-
strapping methods. Building on the block bootstrap inference for
autocorrelations of Romano and Thombs (1996), Horowitz et al.
(2006) develop a blocks-of-blocks bootstrap that reduces the error
rejection probability to nearly zero for samples with at least 500
observations. Finally, Escanciano and Lobato (2009) (EL) combine
robustification techniques with a data-driven approach for auto-
matic lag selection. The resulting adaptive test has particularly high
empirical power in finite samples.

Frequency-domain tests provide an alternative framework for
the tests of serial correlation. Hong (1996) uses a kernel estima-
tor of the spectral density for testing serial correlation of arbi-
trary form. His procedure relies on a distance measure between
two spectral densities of the data and the one under the null hy-
pothesis of no serial correlation. Paparoditis (2000) proposes a test
statistic based on the distance between a kernel estimator of the
ratio between the true and the hypothesized spectral density and
the expected value of the estimator under the null. Wavelet meth-
ods are particularly suitable in such situations where the data has
jumps, kinks, seasonality and nonstationary features. The frame-
work established by Lee and Hong (2001) is a wavelet-based test
for serial correlation of unknown form that effectively takes into
account local features, such as peaks and spikes in a spectral den-
sity. Duchesne (2006) extends the Lee and Hong (2001) framework
to a multivariate time series setting. Hong and Kao (2004) extend
the wavelet spectral framework to the panel regression. The sim-
ulation results of Lee and Hong (2001) and Duchesne (2006) in-
dicate size over-rejections and modest power in small samples.
Reliance on the estimation of the nonparametric spectral density
together with the choice of the smoothing parameter affects their
small sample performance. Recently, Duchesne et al. (2010) have
made use of wavelet shrinkage (noise suppression) estimators to
alleviate the sensitivity of the wavelet spectral tests to the choice
of the resolution parameter. This framework requires a data-driven
threshold choice and the empirical size may remain relatively far
from the nominal size. Therefore, although a shrinkage framework
provides some refinement, the reliance on the estimation of the



Download English Version:

https://daneshyari.com/en/article/5095895

Download Persian Version:

https://daneshyari.com/article/5095895

Daneshyari.com


https://daneshyari.com/en/article/5095895
https://daneshyari.com/article/5095895
https://daneshyari.com

