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a b s t r a c t

This paper considers a quasi-maximum likelihood estimation for a linear panel data model with time
and individual fixed effects, where the disturbances have dynamic and spatial correlations which might
be spatially stable or unstable. We first consider both separable and nonseparable space–time filters for
the stable model. The separable space–time filter is subject to a parametric restriction which results in
relative computational simplicity. In contrast to the spatial econometrics literature, we expose economic
restrictions imposed by the separable space–time filter model and explore computational tractability
of the nonseparable filter model. Throughout this paper, the effect of initial observations is taken into
account, which results in an exact likelihood function for estimation. This is important when the span
of time periods is short. We then investigate spatial unstable cases, where we propose to apply a
‘‘spatial differencing’’ to all variables in the regression equation as a data transformation, which may
eliminate unstable or explosive spatial components in order to achieve a robust estimator. For estimates
of the parameters in both the regression part and the disturbance process, they are

√
nT -consistent and

asymptotically centered normal regardless of whether T is large or not and whether the process is stable
or not.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Panel regression models can be augmented with serial corre-
lation or spatial dependence so as to control for time and spatial
dependence in addition to heterogeneity in panels. These spatio-
temporal interactions can be specified in dependent variables as in
Su and Yang (2007), Yu et al. (2008), Elhorst (2010) among others.
They can also be specified in the error components such as in El-
horst (2004), Baltagi et al. (2007), Parent and LeSage (2011, 2012)
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and Lee and Yu (2012). Empirical applications of these spatio-
temporal dependences can be found in habit formation (Kornio-
tis, 2010), growth convergence of countries and regions (Ertur and
Koch, 2007; Mohl and Hagen, 2010), regional markets (Keller and
Shiue, 2007), labor economics (Lottmann, 2012), public economics
(Revelli, 2001; Franzese, 2007) and other areas of study. The cur-
rent paper focuses on a panel regression model with serially and
spatially correlated disturbances. In the spatial literature, the serial
and spatial correlations in disturbances have often been separated.
Baltagi et al. (2007) consider testing serial and spatial correlations
in a model where these correlations are separable in disturbances.
Parent and LeSage (2011, 2012) term it a space–time filter and
consider Bayesian estimation. However, this separability imposes
restrictions on spatial and time dynamics. It also rules out the pos-
sibility of spatial cointegration (Yu et al., 2012) as well as cases
in which serial and spatial correlations may operate only through
time, which is known as diffusion. In terms of forecasting, using
spatial correlations improves forecasting performance, as noted in
Giacomini and Granger (2004) and Longhi and Nijkamp (2007). In-
deed, Giacomini and Granger (2004) conclude that ignoring spatial
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correlation leads to highly inaccurate forecasts in their application.
The separable model does not involve any spatial effect in the best
linear unbiased predictor formula, but it is present under the non-
separable model. From the estimation point of view, ignoring the
mixing feature of space–time diffusionmight result in estimating a
misspecified dynamic process. The estimates of parameters in the
misspecified disturbances may be subject to estimation bias and
lead to inaccurate statistical inference when a mixing of time and
space features is present in the data generating process (DGP).

The current paper investigates asymptotic properties of the
quasi-maximum likelihood estimator (QMLE) for a panel regres-
sion model with dynamic and spatial correlations, where the sep-
arable space–time filter is a special case. The estimation of such a
general space–time dynamic process has been argued (e.g., in Par-
ent and LeSage (2011, 2012)) as unwise due to additional complex-
ity in computation relative to the separable space–time filter for
Bayesian estimation. Thus, we pay special attention to the compu-
tational issue of the nonseparable space–timemodel with the QML
approach. In the estimation, we also consider the treatment of ini-
tial period observations, which is important when the number of
time periods is small. This results in the formulation of an exact
likelihood function. Indeed, the computational issue is raised due
to the initial period observation. If the initial period observation
were treated as exogenously given, the QML estimation would be
conditional on the initial period observation. Due to the recursive
nature of a dynamic process, the evaluation of the conditional like-
lihood would be computationally simple (Yu et al., 2008; Parent
and LeSage, 2011, 2012). The conditional approach, however, is not
proper in general for a short spatial panel.

For the disturbances in a panel regression model with a non-
separable space–time filter, they may have not only serial cor-
relation and spatial correlation, but also possible space–time
unstable or explosive features in certain circumstances, e.g., the
study ofmarket integration in Keller and Shiue (2007). For the gen-
eral space–time dynamic process, some absolute summability con-
ditions can be imposed if the process is stable in both space and
time dimensions. However, a general nonseparable process might
have spatial cointegration or explosive features when the eigen-
values in the DGP of the disturbances have some unit roots or even
explosive ones (Holly et al., 2011; Yu et al., 2012). This calls for a
treatment in the estimation because ordinary least square (OLS)
or least square dummy variable (LSDV) estimates of the regression
equationwould not be consistent if there is non-stability in the dis-
turbances.1 Thus, in addition to the analysis of the general stable
space–time dynamic process and that of a separable space–time
filter, this paper also concerns possible space–time nonstationar-
ity in the disturbances.Wepropose the use of timedifferencing and
spatial differencing transformations to handle space–time nonsta-
tionarity in estimation. The spatial differencing transformation can
be applied regardless of whether disturbances are spatially stable
or not. With this data transformation, common inference can be
performed and is robust without nonstandard asymptotic proper-
ties for estimates.

In addition to providing asymptotic properties of QML estima-
tion and testing for a spatial panel with both separable and non-
separable space–time filters, the current paper has the following
contributions to the literature. First, we consider the stochastic
spatial time process in the disturbances. In Yu et al. (2008, 2012),
the model considered has spatial and dynamic lags in the main re-
gression. Its particular feature is the presence of fixed individual
effects and/or exogenous variables that will generate time trend
components in the final form of the dynamic model. With spa-
tial nonstationarity, the time trend is a dominant feature for the

1 See Baltagi et al. (2008) for detailed discussions.

asymptotic distribution of an estimator. The model in the cur-
rent paper has a stochastic trend term but not a dominant time
term. This difference could make asymptotic distribution of es-
timators different. The current paper provides some estimation
methods which can overcome the spatial nonstationarity in terms
of stochastic trend which may be present in a spatial nonstation-
arity process. To make the paper complete, we consider not only
spatial nonstationarity but also stable and explosive cases. Thus,
the current paper is different from our previous research on spa-
tial cointegration for a spatial dynamic panel data (SDPD) model.
Second, we consider the estimation based on a likelihood func-
tion that is exact in the sense that we do not need to approximate
the initial observation. Lee and Yu (2010b, 2011) present the spa-
tial difference transformation for the SDPD model but the estima-
tion is conditional on the initial observation, and the consistency
of those estimators requires that T tends to infinity. Furthermore,
when T and n tend to infinity at the same rate, asymptotic biases in
estimators exist. In the current paper, the initial condition is
generated by the process itself and our estimation method is ap-
plicable to the fixed T situation. The estimators are shown to be
consistent and asymptotically normal without T tending to infin-
ity, and there are no asymptotic biases. Therefore, the analysis in
the current paper can be applied to both fixed T and large T cases.
Third, although there are some discussions on the use of the spa-
tial difference transformation in Lee and Yu (2010b, 2011), rigor-
ous justifications on asymptotic properties of estimators are not
provided. The current paper provides rigorous analysis; in partic-
ular, we extend the inverse matrix of a generalized first difference
matrix to the block matrix form (Hsiao et al., 2002). As a result, we
can justify the uniform boundedness property of the involved ma-
trix in order to relate the analysis to those established by Kelejian
and Prucha (1998) for spatial econometric models.

The rest of the paper is organized as follows. Section 2 in-
troduces the model and discusses the separable and nonsepa-
rable space–time filters. Economic implications of separable and
nonseparable filters and distinctive characteristics of stability and
space–time unstable features are presented. Section 3 studies the
panel regressionmodel with the separable space–time filter struc-
ture and its estimation,2 and Section 4 investigates estimation of
the general nonseparable time and space correlations in distur-
bances. Section 5 discusses the use of the spatial difference op-
erator that can eliminate possible nonstationary features in the
data and studies the resulting asymptotic properties of QMLE. Sec-
tion 6 investigates the finite sample performance by Monte Carlo
simulations of the QML estimates and classical tests for the con-
straint which characterizes the space–time filter. Section 7 con-
cludes. Some algebraic derivations and proofs are collected in the
Appendices.

2. A panel regression model with a general space–time filter

2.1. The model

Consider the model

Ynt = Xntβ0 + cn0 + αt0ln + Unt , t = 1, . . . , T (1)
Unt = λ0WnUnt + γ0Un,t−1 + ρ0WnUn,t−1 + Vnt ,

where Ynt = (y1t , y2t , . . . , ynt)′ and Vnt = (v1t , v2t , . . . , vnt)
′

are n × 1 column vectors, and vit ’s are i.i.d. across i and t with
zero mean and variance σ 2

0 . Wn is an n × n nonstochastic spatial

2 While Parent and LeSage (2011) suggest the implementation of a Bayesian
approach, we study the classical QML estimation and investigate asymptotic
properties of the estimates.
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