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a b s t r a c t

We develop new methods for the estimation of time-varying risk-neutral jump tails in asset returns. In
contrast to existing procedures based on tightly parameterizedmodels, our approach imposesmuch fewer
structural assumptions, relying on extreme-value theory approximations together with short-maturity
options. The new estimation approach explicitly allows the parameters characterizing the shape of the
right and the left tails to differ, and importantly for the tail shape parameters to change over time. On
implementing the procedureswith a panel of S&P 500 options, our estimates clearly suggest the existence
of highly statistically significant temporal variation in both of the tails. We further relate this temporal
variation in the shape and the magnitude of the jump tails to the underlying return variation through the
formulation of simple time series models for the tail parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Financial asset returns are not conditionally normally dis-
tributed, but instead exhibit more slowly decaying, and often
asymmetric, tails. This is true even over short horizons, as most
easily seen from the presence of very pronounced volatility smiles
for short maturity options.1 These fatter than normal tails are di-
rectly attributable to occasionally large absolute price changes, or
‘‘jumps’’. The recent financial crises has further underscored the
empirical relevance of tail events, and in turn econometric tech-
niques formore accurately estimating andmodeling such risks.We
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1 The failure of the traditional Black–Scholes model and the presence of volatility

smiles after the market crash of 1987 is well documented in the asset pricing
literature. The impact of this failure for econometric analysis in a corporate finance
setting related to executive compensation has recently been studied by Bhargava
(2013).

add to this literature through the development of new more flex-
ible estimation procedures that explicitly allow for the possibility
of time-varying tails for the large jump moves. In comparison to
the existing literature, our approach imposes much fewer struc-
tural assumption, relying on extreme-value theory approximations
together with short-maturity S&P 500 options. By focusing on the
risk-neutral distributions implied from options data, our estimates
speak directly to the jump tail risk that is priced by the market.
Consistent with the existing literature, we find that the magnitude
of the left jump tail associated with dramatic market declines far
exceeds that of the right jump tail corresponding to large market
appreciations.2 Our new estimation procedures also clearly point
to the existence of non-trivial predictable temporal dependencies
in the tail index parameters characterizing the decay in both tails.

A number of previous studies have argued that the values of
the parameters for the power laws governing the tails of return
distributions may be subject to structural changes; see, e.g., the
studies by Quintos et al. (2001) and Galbraith and Zernov (2004)
based on the traditional Hill-estimator and daily aggregate equity

2 The observation that the left tail inferred from aggregate equity index options
dominates the right tail dates back at least to Rubinstein (1994), who attributed this
to evidence of ‘‘crash-o-phobia’’.
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index returns.3 Relying on a large cross-section of stock returns,
the more recent study by Kelly (2012) reinforces the idea of time-
varying tail risks, and further argues that the temporal variation in
the tail parametersmay help understand aggregatemarket returns
as well as cross-sectional differences in average returns. Similarly,
the study by Bollerslev and Todorov (2011a) demonstrates how
high-frequency intraday data may be used in more accurately
estimating dynamically evolving tails, and how these estimates
may be used inmore effective riskmeasurement andmanagement
decisions.

All of these studies are based on directly observed return data,
and in turn pertain to the objective, or statistical, return distri-
butions. By contrast, the new estimation procedures developed
here pertain to the risk-neutral distribution, explicitly reflect-
ing the way in which the market perceives and prices tail risks.
The method builds on the insight that out-of-the-money short-
maturity options effectively isolate the pricing of jump risk. For-
mally, in the limit for decreasing times-to-maturity and fixed
moneyness, the diffusive risk will not affect the price of an out-
of-the-money option. Regular variation in the jump tail measure,
or compensator, therefore implies a one-to-one mapping between
the shape of the jump tailmeasure and the slope of the option price
surface in the strike dimension. Consequently, the tail index pa-
rameter may be uniquely identified, and in turn estimated, from a
cross-section of deep out-of-the-money short-maturity options at
a given point in time without making any assumptions about the
temporal variation in the overall jump intensity process.4

The basic idea of inferring the risk-neutral jump tails from
options is related to an earlier literature that seek to better ex-
plain option prices through jump risk; see, e.g., Bates (1996), Bates
(2000), Andersen et al. (2002), Pan (2002), Eraker (2004) and
Broadie et al. (2007), along with the more recent work by Christof-
fersen et al. (2012). All of these studies are based on specific,
typically affine, parametric stochastic volatility jump–diffusion
models. Moreover, following Merton (1976), they postulate that
conditionally on a jump occurring the size of the jump is normally
distributed. Our approach is distinctly different in relying on a flex-
ible nonparametric procedure that is able to accommodate com-
plex dynamic tail dependencies and larger jump tails outside this
classical Merton-framework.5

Our newestimation procedure is also related to the earlierwork
by Aït-Sahalia and Lo (1998), who non-parametrically estimate
the entire risk-neutral state price density from options data. Their
approach, however, explicitly assumes that the pricing kernel is
time-invariant. On the other hand, Rosenberg and Engle (2002) do
allow the pricing kernel to change over time, but rely on tightly
parameterized GARCH type models for describing the dynamic
dependencies. Alternatively, Metaxoglou and Smith (2012) resort
to the use of conditional quantile regression techniques for
estimating time-varying pricing kernels. The recent study by Song
and Xiu (2013) also explicitly relates the temporal variation in the
risk-neutral distribution and the pricing kernel to the VIX index
and the volatility of the aggregate market. Meanwhile, none of

3 Fat tailed marginal daily return distributions may arise through stochastic
volatility and leverage effects and/or or ‘‘jumps’’ possibly with time-varying
intensity. As such, these earlier empirical studies are merely suggestive about the
presence of temporal variation in the jump tail index.
4 A related estimation strategy has also been proposed in independent work by

Hamidieh (2011).
5 There is also a literature on Lévy-based option pricing outside the Merton-

framework, in which the underlying price is modeled as an exponential-Lévy
process (see, e.g., Cont and Tankov, 2004, and the references therein), or as a time-
changed Lévy process (see, e.g., Carr et al., 2003). However, these studies generally
impose tight parametric structures on the volatility process and the distributions of
the jumps.

these estimation procedures are directly geared to the tails of the
distribution. By contrast, our approach explicitly focuses on the
tails and the tail decay parameters, in particular, ignoring other
parts of the distribution.

The current paper is related to our earlier work, Bollerslev
and Todorov (2011b), in which short-maturity option data is used
to estimate semiparametrically risk-neutral jump tails. From an
econometric point of view, however, there are two fundamental
differences. First, unlike Bollerslev and Todorov (2011b) we
explicitly allow the shape of the jump tails to vary over time.
Second, the estimation in the present paper is based on a fixed
time span and the entire cross-section of short maturity deep out-
of-the-money options, whereas the estimation in Bollerslev and
Todorov (2011b) rely on long time span asymptotics and only a
limited number of strikes.

At a more general level, our empirical results are also related
to the recent literature by Barro (2006) and others emphasizing
the importance of incorporating rare disasters in macro-finance
models. The idea that rare disasters, or tail events, may help
explain the equity premium and other empirical puzzles in asset
pricing dates back at least to Rietz (1988). Further building on
these ideas, Gabaix (2012) and Wachter (2013) have recently
shown that allowing for time-varying tail risks in otherwise
standard equilibrium based asset pricing models may help explain
the apparent excess volatility of aggregate equity index returns.
Similarly, Bollerslev and Todorov (2011b) and Aït-Sahalia et al.
(2013) suggest that much of the variance risk premium is directly
attributable to disaster, or jump tail risk.

The plan for the rest of the paper is as follows. We begin in the
next section with a discussion of the basic setup and assumptions,
including our very general time-varying jump tail formulation.
Section 3 discusses how options may be used for effectively
separating jumps and continuous price variation, and outlines
our new estimation procedures for the jump tail parameters.
Section 4 summarizes the S&P 500 options data that we use in
the estimation. Our main empirical findings related to the tail risk
parameters and the temporal variation therein are discussed in
Section 5. Section 6 concludes. The proof of the key asymptotic
approximation underlying our new estimation procedures is
deferred to a technical Appendix.

2. Jump tails

The continuous-time no-arbitrage framework that underlies
our new estimation procedure is very general. It includes all
parametric models previously analyzed and estimated in the
literature as special cases. We begin with a discussion of the basic
setup and notation.

2.1. Setup and assumptions

The underlying asset price Xt is defined on the filtered
probability space (Ω,F , P), where (Ft)t≥0 denotes the filtration.
We assume the following general dynamic specification for Xt ,
dXt

Xt−
= αtdt + σtdWt +


R
(ex − 1)µ(dt, dx), (2.1)

where Wt is a Brownian motion, µ is a counting measure for the
jumps in X with compensator dt ⊗ νt(dx), so that µ(dt, dx) =

µ(dt, dx) − dtνt(dx) denotes the corresponding martingale mea-
sure under P.6,7 The drift and volatility processes, αt and σt ,

6 Recall µ([0, t], A) =


s≤t 1{log(1Xs)∈A} for any measurable A ∈ R \ {0} and
1Xs = Xs − Xs− . Specific examples of jump compensators are given later in Eqs.
(2.7), (2.12) and (5.1).
7 Wehave implicitly assumed that Xt does not have fixed times of discontinuities.

This assumption is satisfied by virtually all asset pricingmodels hitherto used in the
literature. Note also that µ is the counting measure for the jumps in log(Xt ).
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