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a b s t r a c t

We consider derivative pricing in factor models, where the factor is Markov with Finite Dimensional
Dependence (FDD). The FDD condition allows for explicit formulas for derivative prices and their term
structure and in this respect is a serious competitor of models with affine dynamic factors. The approach
is illustrated by a comparison of the prices of realized and integrated volatility swaps. We show that
the usual practice of replacing a payoff written on the realized volatility by the payoff written on the
integrated volatility can imply pricing errors which are not negligible when the volatility of the volatility
is large.

© 2015 Published by Elsevier B.V.

1. Introduction

The predictive properties of nonlinear state space models
with finite dimensional dependence (FDD) have been analyzed in
Gourieroux and Jasiak (2000). They consider a (multidimensional)
Markov process (yt) and the (nonlinear) predictor space defined as
the following set of functions of yt−1:

Pred = {E[g(yt)|yt−1] = Et−1g(yt), g varying}. (1.1)

They prove that the predictor space has a finite dimension if and
only if the transition1 of the process can be decomposed as:

p(yt |yt−1) = l0(yt)
K

k=1

ak(yt)bk(yt−1)

= l0(yt)a′(yt)b(yt−1), say, (1.2)

where l0 is a benchmark density function (with respect to an ap-
propriate dominating measure µ), and [b1(yt−1), . . . , bK (yt−1)] is
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1 Decomposition (1.2) looks like a nonlinear canonical representation of the
transition pdf (Lancaster, 1968). However,

(i) the dimension of the predictor space is finite, whereas it is infinite in general
in the canonical representation;

(ii) l0 is not necessarily the marginal density of yt ;
(iii) We have not introduced the orthogonality conditions of the type


ak(y)aj(y)

l0(y)dµ(y) =

bk(y)fj(y)l0(y)dµ(y) = 0, ∀k ≠ j.

Thus the ak (resp. bk) functions cannot be interpreted as orthogonal canonical
directions.

a basis of the predictor space. The decomposition into l0, a, b is not
unique, but the predictor space is always identifiable.2 According
to the type of application the benchmark density can be the sta-
tionary density of the process, if it exists, or simply be equal to one,
when the dominating measure is the Lebesgue measure.

The aim of our paper is the derivative pricing in (multivariate)
factor models, where the factor is Markov with finite dimensional
dependence.

The pricing formulas are derived in Section 2. We first consider
European derivatives written on factor y. We get closed form ex-
pressions for their prices and their term structure. We also explain
how the factor process can be a FDD Markov process in both the
historical and risk-neutral worlds, and discuss the relationship be-
tween the associated historical and risk-neutral decompositions.
The pricing formulas are extended to European derivatives written
on cumulated factor transforms. The volatility and variance swaps
have typically such a payoff and their prices are discussed in de-
tail. The models with smooth transition are special FDD Markov
processes with hidden regimes. They are introduced in Section 3.
We provide regime interpretation of the associated term structure
of predictions in both historical and risk-neutral worlds. The re-
sults are illustrated by the example of gamma mixtures in Sec-
tion 4 to show the flexibility of FDDmodels for describing the term
structure patterns and their dynamics. We see that the FDD term

2 When K = 2 and the factor is one-dimensional, the joint distribution of
(yt , yt−1) belongs to the Sarmanov family of bivariate distributions (Sarmanov,
1966), and (Huang and Lin, 2011).
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structure models can easily feature several bumps, which is espe-
cially convenient for the analysis of ultra-long riskfree bonds and
of corporate bonds. We compare in Section 5 the pricing of re-
alized and integrated variance swaps. Indeed the variance swaps
proposed on the market have a payoff written on a realized vari-
ance, but are often priced as if the payoff were written on the
(unobservable) integrated stochastic volatility. We discuss the
magnitude of the error in such an approximated pricing formula
and show that it cannot be neglected if the volatility of the volatil-
ity is large. Section 6 concludes. Proofs are gathered in Appendices.

2. The pricing formulas

Let us consider a discrete time model with a FDD Markov
(multidimensional) state process (yt) and a historical transition
satisfying decomposition (1.2). The information of the investor at
date t includes the current and lagged values of the state process.
We denote by m(yt+1) the stochastic discount factor (sdf) for
period (t, t + 1) and E0(G) =


G(y)l0(y)dµ(y) the expectation of

a matrix function G(y) with respect to the benchmark distribution
l0(y)dµ(y), where µ is a dominating measure.

2.1. European derivatives

The price at date t of a European derivative paying g(yt+H) at
t + H is:

Π(t,H; g) = Et [m(yt+1) . . .m(yt+H)g(yt+H)]. (2.1)

This price admits a closed form expression (see Appendix).

Proposition 1. Π(t,H; g) = E0(mga′)[E0(mba′)]H−1b(yt),H ≥1.

The derivative prices are linear combinations of the generators
bk(yt), k = 1, . . . , K of the predictor space at date t . Moreover, at
any given date t and for any payoff function g , the term structures
of derivative prices:

H → Π(t,H; g) are generated by the baseline term structures,
elements of: H → [E0(mba′)]H .

For instance, by taking g(y) = 1, we get the term structure of
zero-coupon bond prices:

B(t,H) = E0(ma′)[E0(mba′)]H−1b(yt), H ≥ 1, (2.2)

which is linear in the factor Ft = b(yt), which is a nonlinear func-
tion of state (yt). This linearity property of the zero-coupon prices
has to be distinguished from the linearity property of the yields ap-
pearing in the affine term structuremodels (see e.g. Duffie and Kan,
1996) the zero-coupon prices.

Under the FDDdynamics, the term structure of the zero-coupon
prices is a combination of the baseline term structures defined by
the elements of matrix [E0(mba′)]H−1. These baseline term struc-
tures depend on exponential functions λH

j corresponding to the
eigenvalues of E0(mba′), and possibly on exponentials multiplied
by polynomials if the algebraic multiplicity of λj is strictly smaller
than its geometric multiplicity, that is the dimension of its as-
sociated eigenspace. Thus, model (2.2) provides a justification of
the specification considered in Vasicek and Fong (1982), or Shea
(1985), for exponential splines with random coefficients, or in Mc-
Culloch (1975), for exponentials times polynomials specification.

2.2. Historical versus risk-neutral factor dynamics

The historical prediction of payoff g(yt+1) is obtained in the
special case m(y) = 1. We get:

Et [g(yt+H)] = E0(ga′)[E0(ba′)]H−1b(yt). (2.3)

Therefore the term structure of risk premia can be defined as:

Π(t,H; g) − Et [g(yt+H)]B(t,H) = {E0(mga′)[E0(mba′)]H−1

− B(t,H)E0(ga′)[E0(ba′)]H−1
}b(yt) (2.4)

where B(t,H) is given by formula (2.2).
The risk-neutral transition of the factor is given in the next

proposition.

Proposition 2. The risk-neutral transition of factor y is:

q(yt |yt−1) = l0(yt)
K

k=1

a∗

k(yt)b
∗

k(yt−1),

where:

a∗

k(yt) = [ak(yt)m(yt)]/E0(akm),

b∗

k(yt−1) = [bk(yt−1)E0(akm)]


K

j=1

E0(ajm)bj(yt−1)


.

Proof. We have:

q(yt |yt−1) =
m(yt)p(yt |yt−1)

m(yt)p(yt |yt−1)dµ(yt)

=

l0(yt)
K

k=1
[ak(yt)m(yt)bk(yt−1)]

K
j=1

{E0(ajm)bj(yt−1)}

= l0(yt)
K

k=1

[a∗

k(yt)b
∗

k(yt−1)]. �

Thus, the factor process is a FDDMarkov process under both the
historical and risk-neutral distributions, with a same dimension K
of the historical and risk-neutral predictor spaces. This result is
a consequence of the particular choice of the sdf, which depends
on the current factor value of the factor only. Also note that
functions a∗, b∗ have been normalized in the decomposition. This
normalization will be useful for the hidden regime interpretation
in Section 3.

2.3. Derivatives written on cumulated factor transforms

Let us now consider the price of a derivative paying:

c[g(yt+H∗) + · · · + g(yt+H)], 1 ≤ H∗
≤ H,

at date t + H . Its price is:

Π(t,H∗,H; c, g)
= Et{m(yt+1) . . .m(yt+H)c[g(yt+H∗) + · · · + g(yt+H)]}. (2.5)

As usual these prices are easy to derive if function c is expo-
nential c(z) = exp(uz), say, where argument u may be complex.
By considering complex argument u, we allow for the use of trans-
form analysis to deduce the prices of derivatives with other real c
functions (Duffie et al., 2000). For exponential function c , we get:

Π(t,H∗,H; exp(u.), g) = Et{m(yt+1) · · ·m(yt+H) exp[ug(yt+H∗)

+ · · · + ug(yt+H)]}. (2.6)

Proposition 3.

Π(t,H∗,H; exp(u.), g)

= E0[m exp(ug)a′
][E0(m exp(ug)ba′)]H−H∗

[E0(mba′)]H
∗
−1b(yt),

for 1 ≤ H∗
≤ H.
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