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a b s t r a c t

We propose a method for estimating stochastic volatility models by adapting the HJM approach to the
case of volatility derivatives. We characterize restrictions that observed variance swap dynamics have
to satisfy to prevent arbitrage opportunities. When the drift of variance swap rates are affine under
the pricing measure, we obtain closed form expressions for those restrictions and formulas for forward
variance curves. Using data on the S&P500 index and variance swap rates on different time to maturities,
we find that linear mean-reverting one factor models provide inaccurate representation of the dynamics
of the variance swap rates while two-factor models significantly outperform the former both in and out
of sample.
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1. Introduction

We propose in this paper a novel method for estimating
stochastic volatility models by adapting the approach of Heath
et al. (1992) (HJM) from bond pricing to stochastic volatility mod-
els, using volatility derivatives as the market inputs. The HJM ap-
proach ismotivated by the fact that in liquidmarkets, such asmany
markets for options and variance derivatives, one can rely on the
observedmarket prices of standard liquid securities, which are ex-
pected to be fair under standard competitivemarkets assumptions,
in order to estimate a model and subsequently price and hedge
other more complex or less liquid securities.

In the early option pricing literature, starting with the semi-
nal contributions of Black and Scholes (1973) and Merton (1973),
stock priceswere assumed to followunivariate processeswith con-
stant volatility. The empirical observation that options’ implied
volatility changes through time, across strike prices and maturi-
ties, rapidly gave rise to models relaxing this assumption, such as
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the stochastic volatility model of Hull and White (1987), or de-
terministic time-varying models for implied volatilities such as
Derman and Kani (1994), Dupire (1993) and Dupire (1994). Stein
and Stein (1991) and Heston (1993), among others, developed
stochastic volatility models in which innovations to volatility need
not be uncorrelatedwith innovations to the price of the underlying
asset, unlike Hull andWhite (1987). Thesemodels proved useful in
terms of explaining some of the joint time-series behavior of stock
and option prices.

Estimating stochastic volatility models poses substantial chal-
lenges, though. Most of the difficulties arise from the fact that, by
nature, volatility dynamics are not entirely observable. Further, the
presence of one or more additional state variables that drive the
volatility of the underlying asset price confers less tractability to
the model from an analytic perspective.

In order to overcome the fact that volatility is unobservable,
market-based perspectives have been adopted in the stochastic
volatility literature. These methods take as primitives a set of
financial securitieswhich are liquidly traded. The basic assumption
is that the fair price of each security is observable, and any quantity
of the security can be sold or bought at its observed price at any
point in time. These prices encapsulate what the market is telling
the modeler. The market-based modeling approach postulates
dynamic equations for the prices of the liquid instruments. The
difficulty inherent in the approach consists in checking that the
multitude of equations does not introduce inconsistencies and
spurious arbitrage opportunities in the model: in other words, if
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the model is used to price the securities that served as its inputs,
does it output back their prices?

Stochastic implied volatility models are an example of market-
based models whose primitives are implied volatilities. This type
of models focuses on the stochastic dynamics of either a single
implied volatility (e.g. Lyons, 1997), the term structure of implied
volatility (as in Schönbucher, 1999), or the whole volatility sur-
face (e.g. Albanese et al. (1998); Ledoit et al. (2002)). While these
approaches deal with the problem of stochastic implied volatility
from a theoretical perspective, Rosenberg (2000) and Cont et al.
(2002), among others, focus on the empirical aspects of the prob-
lem.However, estimating an arbitrage-freemodel of stochastic im-
plied volatility is involved since the quantity of interest inherits the
nonlinearities of the Black–Scholes formula (see e.g. Durrleman,
2004; Bergomi, 2005).

This paper contributes to the literature on stochastic volatility
models by introducing the use of variance swap rates, which
are the most actively traded variance related derivative products,
instead of implied volatilities, as primitives for the stochastic
volatilitymodel, and then by deriving the constraints on themodel
tomake it consistentwith its inputs, detailing analytically the class
of consistent models, and developing a closed-form likelihood-
based estimation procedure for any consistent model.

A variance swap is a forward contract on the future quadratic
variation that pays, at expiration, the difference between the
quadratic variation over the horizon of the contract and the fixed
variance swap rate. The use of variance swap rates offers several
advantages for stochastic volatility modeling. In the first place,
they are popular volatility derivatives, frequently used by market
practitioners as a hedging tool for volatility risk, and have been
actively traded in over-the-counter markets since the late 1990s,
and in the simpler form of variance futures on exchanges. For that
reason, variance swaps constitute a particularly reliable building
block for a market based approach. Moreover, they can be easily
synthesized from option prices (see e.g. Carr and Wu, 2009; Egloff
et al., 2010; among others).1 Second, for model tractability, they
are especially convenient because of the linearity of their payoffs,
together with the fact that variance derivatives can be seen as
a family of conditional expectations over the distribution of the
underlying’s volatility, leading to linear relationships between the
unobserved spot variance and the observed rates.

Of course, the model needs to be made consistent in the
sense that if the model were used to price its inputs as any
other derivative contracts, the model’s output price should match
the inputted price. We adopt a Markovian setup as in Bühler
(2006) as our starting point. For an arbitrary number of sources
of uncertainty in the economy, and assuming that we observe as
many different time-to-maturity variance swap rates as sources
of uncertainty, we characterize in analytical form the restrictions
that (observed) derivative prices dynamics must satisfy in order
to prevent arbitrage opportunities under the pricing measure.
Moreover, we can implicitly define consistent forward variance
curves. Consistent dynamic models are crucial for hedging
purposes, in particular, where it is more important to fit the time
series properties of the variables rather than the time to maturity
or strike dimension of implied volatilities.2

When, additionally, (i) drift functions of variance swap rates
are affine under the pricing measure Q , and (ii) forward variance

1 In practice, they may be a better choice than option prices since deep in- or
out-of-the-money options tend to be illiquid. Using variance swap prices avoids
this problem because prices of individual options are aggregated, so the impact of
liquidity-induced idiosyncratic errors in each option price is reduced.
2 The usual practice relies on calibrating alternative models using information of

stock and option prices (equivalently implied volatilities) at a given point in time,
which ultimately is not accounting for the dynamics of the processes.

curves are also affine in variance swap rates, we are able to
obtain closed-form analytical expressions for the restrictions that
affect the dynamics of observed prices and formulas for consistent
forward variance curves. In particular, for a model with d sources
of volatility risk, we find that a consistent affine–drift model is
determined by d + 1 free parameters. These parameters can be
naturally interpreted as speeds of mean reversion of the stochastic
system and its steady state level.

Apart from its tractability, the affine-Q drift models have two
additional attractive featuresworthmentioning. First, the diffusion
functions of variance swap rates remain unrestricted except for
the instantaneous variance of the underlying asset; hence, leaving
room for non-affine specifications of the diffusion such as the
constant elasticity of variance (CEV) model of Jones (2003), which
is a relevant featurewhen fitting themodels to the data; see, e.g., Li
and Zhang (2013). Second, drift specifications richer than the ones
belonging to the affine class can be obtained under the objective
measure P through different specifications of market prices of risk.

For estimation, we rely on observations on the joint time-
series of the underlying asset price and several variance swap
rates with different maturities. Our joint modeling strategy
allows us to separately pin down risk premia related to each
of the different sources of uncertainty. However, as is usual in
many financial applications dealing with multivariate diffusions,
likelihood functions are not known explicitly for the models of
interest. The solution to this problem relies on the approach of Aït-
Sahalia (2008), who developed closed-form series expansions
for the likelihood function for arbitrary multivariate continuous-
time diffusions at discrete intervals of observations. Moreover,
maximum likelihood estimation allows us to use likelihood ratio
tests to evaluate the fit of non-nested models (see Vuong, 1989),
which is difficult or impossible for other methods, such as the
method of moments.

We derive explicit pricing formulas for two important classes of
affine-Q drift models. The first one includes two sources of uncer-
tainty in the economy, one specific to variance swap rates and one
common to both variance swap rates and the stock; the second one
assumes there are three sources of uncertainty, two of which driv-
ing the dynamics of variance swap rates. The first class of models
we derive nests several stochastic volatilitymodels already consid-
ered in the literature such as Heston (1993)’s, the GARCH stochas-
tic volatility model considered in Nelson (1990), or the CEV model
of Jones (2003). The second one generalizes stochastic volatility
specifications with two volatility factors considered in Gatheral
(2008), Amengual (2008), Christoffersen et al. (2009) and Egloff
et al. (2010) among others, and is compatible with the evidence
in favor of two volatility factors provided by Li and Zhang (2010).

We assess the small sample properties of the parameter es-
timates resulting from our proposed methodology by means of
Monte Carlo experiments. Given the numerical tractability of the
model and estimation method, we can easily perform large num-
bers of Monte Carlo simulations. In particular, we examine differ-
ent scenarios including the effect of using different information
sets, sampling frequency, near unit-root behavior for volatility and
compare the small sample behavior of the estimators to their pre-
dicted asymptotic one. As expected, the sampling variance of dif-
fusion parameters estimates is smaller than the corresponding to
drift parameters, specially for those entering only through the P
measure. Finally, with additional variance swap rates, the preci-
sion of the Q -drift parameters estimates significantly increases.

When taking the models to the data, we find that observa-
tion of additional variance swap rates with different time-to-
maturity rates lead to significant efficiency gains in the estimation
of the drift parameters under the pricing measure. Moreover, in
agreement with the recent option pricing literature, our empiri-
cal results suggest that linear mean-reverting one factor models
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