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a b s t r a c t

We introduce a tractable class of multi-factor price processes with regime-switching stochastic volatility
and jumps, which flexibly adapt to changing market conditions and permit fast option pricing. A small
set of structural parameters, whose dimension is invariant to the number of factors, fully specifies
the joint dynamics of the underlying asset and options implied volatility surface. We develop a novel
particle filter for efficiently extracting the latent state from joint S&P 500 returns and options data. The
model outperforms standard benchmarks in- and out-of-sample, and remains robust even in the wake of
seemingly large discontinuities such as the recent financial crisis.
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1. Introduction

Despite great progress in option pricing over the past thirty
years, a central challenge still remains: to develop parsimonious
price processes characterized by a small number of stable, well-
identified parameters, yet with rich enough dynamics to match
greatly varying shapes of the implied volatility (IV) surface at
different dates. Latent factor models seem well suited to this
challenge. Variations in the hidden state can drive variations in
the underlying asset’s conditional density and derivative prices,
while a potentially small set of structural parameters remains
fixed over time. In this paper, we develop a tractable class of
regime-switching jump-diffusions, which are conditionally affine
and permit fast option pricing. When the latent state exhibits
multifrequency scaling, the resulting price process is tightly
specified by a small number of fixed parameters and captures the
rich dynamics of the IV surface both in- and out-of-sample.

The one-factor stochastic volatility models of Hull and White
(1987) and Heston (1993) and the affine jump-diffusions of Bates
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(1996), Bakshi et al. (1997), andDuffie et al. (2000) have stimulated
a large body of modern option pricing research. Nonetheless, one-
factor models are now widely acknowledged to be too restrictive
to capture important features of the IV surface.1 Outside the
option pricing literature, multiple volatility factors have proven
to be useful for modeling the time-series of asset returns (Calvet
et al., 1997; Engle and Lee, 1999; Calvet and Fisher, 2001, 2008a;
Chernov et al., 2003), forecasting volatility (Calvet and Fisher,
2004; Calvet et al., 2006; Lux and Kaizoji, 2007; Lux, 2008; Corsi,
2009), and understanding equilibrium prices and returns (Calvet
and Fisher, 2007; Adrian and Rosenberg, 2008; Campbell et al.,
2012). These advances suggest that multi-factor volatility should
play an increasingly important role in derivatives research.

A growing strand of the option literature incorporates multi-
factor stochastic volatility within an affine asset-pricing frame-
work.2 While offering fast valuation, affine models entail
important limitations for derivatives pricing (Li and Zhang, 2013).
Non-affine multi-factor models offer the potential for greater flex-
ibility, but are typically cumbersome to implement. For example,

1 See, for example, Bates (2000), Jones (2003), and Garcia et al. (2009), as well as
the literature cited therein.
2 See Andersen et al. (2012), Bates (2000, 2012), Christoffersen et al. (2009,

2010a), and Egloff et al. (2010).
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themathematical finance literature has studiedMarkov-switching
jump-diffusionswith diffusive volatility. Derivative prices are then
usually determined by a system of partial differential equations
that is challenging to solve numerically (Elliott et al., 2007a).3 Be-
cause the empirical implementation of non-affine models is hin-
dered by the cost of computing option prices, the analysis often
only considers the time-series of the underlying asset, or simple
volatility contracts such as variance swaps or the VIX, rather than
a full options panel.4

In this paper, we develop a highly tractable class of Markov-
switching jump-diffusions, which extend the Heston (1993)model
to multiple stochastic volatility factors and jumps. Our approach
builds on an earlier contribution by Dai and Singleton (2003),
who consider an interest rate term-structure model with regime-
switching in the long-run levels of the factors. We generalize their
technology by allowing for jumps and apply the extended formula-
tion to equity. In our general specification, the volatility of the un-
derlying asset mean-reverts toward a stochastic central tendency
driven by a Markov chain. We permit jumps in the underlying as-
set price that are tied to regime changes in the volatility state, as
equilibrium valuation implies (Calvet and Fisher, 2008b). The re-
sulting model of the stock price is conditionally affine and delivers
fast option valuation.

To facilitate empirical implementation, we next introduce a
tight specification of the conditionally affine price process. We as-
sume that the latent state follows aMarkov-switchingMultifractal
(MSM), as defined in Calvet and Fisher (2001, 2004).MSM is a parsi-
monious pure regime-switchingmodelwith volatility components
of heterogeneous frequencies, which matches the fat tails, hyper-
bolic autocorrelation in volatility, and moment-scaling commonly
observed in financial data. The present paper parsimoniously ex-
tends MSM by incorporating multifrequency diffusive volatility
and leverage effects. We also propose a tight parametrization of
jumps and risk premia, and call the resulting model Skew MSM. A
striking property of SkewMSM is that it accommodates arbitrarily
many volatility factors, jumps, and risk premia with only a small
number of fixed structural parameters.

We develop new filtering and estimation techniques for option
pricing. In a general state-space model, the joint density of returns
and option prices can be used to impute latent states and efficiently
estimate the structural parameters of the model. The bootstrap
particle filter of Gordon et al. (1993) allows the empiricist to track
a latent state by way of a recursive algorithm, which uses Monte
Carlo draws (particles) to approximate the conditional state and
data densities at each time-step.5 In a model with a rich state
space and large rare events, however, the bootstrap filter may
not capture sudden moves to unlikely, but nonetheless important,
parts of the state space. To address this issue we develop a variant
of the bootstrap filter with stratified sampling, which ensures that
all parts of the discrete MSM state space are represented. The
particle filter permits efficient filtering and maximum likelihood
estimation (MLE) of SkewMSMon the underlying asset and a panel
of options.

3 See also Chourdakis (2006) and Elliott et al. (2007b). Elliott et al. (2011) studies a
restricted version of the equilibriummodel developed in Calvet and Fisher (2008b).
Empirically, Durham and Park (2013) circumvent the complexity of estimating
regime-switching jump-diffusions on a full options panel by estimating theirmodel
on integrated volatility.
4 For example, Kaeck and Alexander (2012) estimate a variety of affine and non-

affine models on S&P 500 index returns and the VIX term structure.
5 Applications of particle filtering to inference about hidden volatility states

include Calvet et al. (2006), Johannes et al. (2009), Malik and Pitt (2011),
and Christoffersen et al. (2010b).

This work is among the limited number of papers that estimate
structural valuation models using both spot and option prices.6
To the best of our knowledge, the present contribution is also
the first to efficiently filter the latent state by using the joint
distribution of the underlying asset returns and option IV surface.
In comparison, among the leading prior applications of filtering
to option pricing, Johannes et al. (2009) estimate jump-diffusions
using stock return data only and incorporate short-maturity
options into filters to generate diagnostics. Christoffersen et al.
(2010b) filter latent states only from stock returns and use option
data to evaluate goodness of fit and estimate parameters. The
inference methods developed in this paper can be conveniently
applied to Skew MSM because our model is parsimonious and
permits fast option pricing.

Our empirical analysis begins by examining the performance of
Skew MSM using only equity index returns. We conduct ML esti-
mation on a long sample of the S&P 500 index, and find that the in-
sample likelihood increases as frequency components are added,
even though higher-dimensional specifications require no addi-
tional parameters. SkewMSMalso fits the return data considerably
better than standard jump-diffusions.

We next carry out joint estimation on both index returns and
index options. Our in-sample options data is composed of almost
ten years of monthly option surfaces, with a wide range of strikes
and maturities. Skew MSM produces higher in-sample likelihood
and lower root mean square pricing errors than benchmark affine
jump-diffusions. In five years of out-of-sample data that include
the recent financial crisis, Skew MSM again matches option prices
more closely than standard benchmarks.

The remainder of the paper is organized as follows. Section 2
introduces a class of conditionally-affine regime-switching jump-
diffusions and develops fast option pricing. Section 3 defines Skew
MSM by parsimoniously specifying multi-factor volatility and risk
premia for our conditionally affine process. Section 4 discusses the
empirical methodology and develops a particle filter for stock and
option data. Section 5 reports the empirical results. All proofs are
in Appendix.

2. A tractable class of conditionally affine jump-diffusions

This section introduces a class of conditionally affine diffusions,
which extends Heston’s model to multiple volatility regimes and
jumps.

2.1. A diffusion with regime-switch dependent jumps

We consider a frictionless financial market defined on the
continuous time domain T = [0,∞). The structure of uncertainty
is specified by a filtered probability space (Ω,F , (Ft)t∈T , P),
where P denotes the physical measure. The economy is driven
by a Markov chain (Mt)t∈T taking values on a finite set D =

{m1, . . . ,md
}.

6 Chernov and Ghysels (2000) use the Efficient Method of Moments. For the
estimation, they only include the at-the-money call with the shortest time to
maturity. Pan (2002) uses a tailored version of the GeneralizedMethod of Moments
(GMM) to estimate the Bates model using a time series of S&P 500 index returns
and options (two per day). Eraker (2004) uses Markov Chain Monte Carlo methods
to estimate the risk premia for jumps in returns and volatility, also using returns
and options (around three per day). To our best knowledge, Broadie et al. (2007)
were the first to consider the whole cross-section of option prices on the S&P 500
within an integrated approach. To reduce the computational burden, they fix some
parameters using results from previous studies for the time series of returns and
then use a least-square argument to fit option prices. Finally, Garcia et al. (2011)
propose a GMM-basedmethodology for the Hestonmodel that uses high-frequency
data from the index returns and they apply it to the whole cross-section of option
prices. However, it is not obvious how to extend their approach to include jumps.
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