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a b s t r a c t

This paper presents estimation methods and asymptotic theory for the analysis of a nonparametrically
specified conditional quantile process. Two estimators based on local linear regressions are proposed. The
first estimator applies simple inequality constraints while the second uses rearrangement to maintain
quantile monotonicity. The bandwidth parameter is allowed to vary across quantiles to adapt to data
sparsity. For inference, the paper first establishes a uniform Bahadur representation and then shows that
the two estimators converge weakly to the same limiting Gaussian process. As an empirical illustration,
the paper considers a dataset from Project STAR and delivers two new findings.
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1. Introduction

Models for conditional quantiles play an important role in
econometrics and statistics. In practice, it is often desirable to
consider simultaneously multiple quantiles to obtain a complete
analysis of the stochastic relationships between variables. This
underlies the consideration of the conditional quantile process.
A seminal contribution to this analysis is Koenker and Portnoy
(1987), which established a uniform Bahadur representation and
serves as the foundation for further developments in this area.
More recently, Koenker and Xiao (2002) considered the issue of
testing composite hypotheses about quantile regression processes
using Khmaladzation (Khmaladze, 1981). Chernozhukov and
Fernandez-Val (2005) considered the same issue and suggested re-
sampling as an alternative approach. Angrist et al. (2006) estab-
lished inferential theory in misspecified models. Their results can
be used to study awide range of issues, including but not restricted
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to (i) testing alternative model specifications, (ii) testing stochas-
tic dominance, and (iii) detecting treatment effect significance
and heterogeneity.

The main focus of the above literature has been on paramet-
ric quantile models. However, there are frequent occasions where
parametric specifications fail, makingmore flexible nonparametric
methods desirable. This paper aims to achieve two goals. The first
is to propose two simple nonparametric estimators for the condi-
tional quantile process. The second is to derive an inferential the-
ory that can beused for constructing uniformconfidence bands and
testing various hypotheses concerning conditional quantile pro-
cesses.

The two proposed estimators are both based on local linear re-
gressions (Fan et al., 1994; Yu and Jones, 1998), but differing in how
they ensure the quantile monotonicity. Specifically, the first esti-
mator applies local linear regressions to a grid of quantiles while
imposing a set of linear inequality constraints, and then linearly
interpolates between adjacent quantiles to obtain an estimate for
the quantile process. The second estimator first applies local lin-
ear regressions to a grid of quantiles without any constraints and
then applies rearrangement (Chernozhukov et al., 2010) if quantile
crossing occurs. They share the following two features. First, the
bandwidth parameter is allowed to vary across quantiles to adapt
to data sparsity. This is important because data are typically more
sparse near the tails of the conditional distribution. Second, the
computation is feasible even for large sample sizes. More detailed
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comparisons between the two estimators are provided in Section 3
of the paper.

For inference, three sets of results are established. (1)We derive
a uniform Bahadur representation for the unconstrained estimator
(i.e., obtainedwithout imposing themonotonicity constraint). This
generalizes Theorem2.1 in Koenker and Portnoy (1987) to the local
linear regression setting. While being of independent interest, this
representation forms a key step in proving the subsequent results.
(2) We show that the first proposed estimator has the same first-
order asymptotic distribution as the unconstrained estimator if a
certain rate condition on the quantile grid is satisfied. Further, its
asymptotic distribution is a continuous Gaussian process, whose
critical values can be estimated via simulations by exploiting the
fact that it is conditionally pivotal, drawing on the insights of
Parzen et al. (1994) and Chernozhukov et al. (2009). (3) We show
that the second proposed estimator follows the same asymptotic
distribution as the first. This result broadens the application of
rearrangement to the local linear regression context.

The inferential theory and methods can be used to analyze a
wide range of issues. They include: (1) constructing a uniform con-
fidence band for the conditional quantile process, (2) construct-
ing a uniform confidence band for the difference or other linear
functions of multiple such processes, and (3) testing distributional
hypotheses such as the homogeneity or equality of quantile treat-
ment effects, as well as first-order and second-order conditional
stochastic dominance. They can also be potentially useful for con-
structing specification tests of parametrically specified conditional
quantile processes. Studies considering the latter issue include Es-
canciano and Velasco (2010) and Mammen et al. (2013).

We evaluate the proposed methods using simulations and
briefly summarize the results below. First, the two proposed es-
timators and the conventional quantile-by-quantile local linear
estimator all perform similarly in terms of the integrated mean
squared error criterion. This result confirms the finding that they
all share the same limiting distribution. Second, the confidence
band can have undercoverage because the bias term in the estima-
tor can be difficult to estimate. This is not particular to our problem,
but rather is a well known fact in the nonparametric literature. To
address this issue, we suggest a simple modification that allows
for a more flexible bias correction. The resulting confidence band
is asymptotically conservative. Simulation evidence suggests that
it has adequate coverage, even with small sample sizes, and that it
is only mildly wider than the confidence band that uses the con-
ventional bias correction.

As an empirical illustration, the paper considers a dataset from
an experiment known as Project STAR (Student–Teacher Achieve-
ment Ratio). Two results emerge. First, the students in the up-
per quantiles of the test score distribution benefit more from the
class size reduction. Second, the effect of the class size reduction is
strongest for the classes taught by moderately experienced teach-
ers (i.e., 6–8 years of experience).We also conduct hypotheses tests
for treatment significance, homogeneity, equality as well as first
order stochastic dominance. The results reconfirm the above two
findings.

There are two key differences between this paper and Belloni
et al. (2011). The first difference is in the estimation framework.
Belloni et al. (2011) consider a series-based framework, where
the conditional quantile function is modeled globally with a large
number of parameters. The current paper is based on local linear
regressions, where the quantile function is modeled locally by a
few parameters and the modeling complexity is governed by the
bandwidth. Consequently, different techniques are applied to es-
tablish the asymptotic properties of the estimators. The second dif-
ference is how the quantile monotonicity is achieved. Belloni et al.
(2011) apply monotonization procedures to a preliminary series-
based estimator, while in our first estimator the monotonicity en-
ters directly into the estimation through inequality constraints.

When viewed from a methodological perspective, the current
paper is related to the following two strands of literature. First, the
first estimator is related to the studies on estimating nonparamet-
ric regression relationships subject to monotonicity constraints,
where the main focus has been the monotonicity with respect to
the covariate. For example, Mammen (1991) considered an esti-
mator consisting of a kernel smoothing step and an isotonization
step. Delecroix et al. (1996) studied a procedure that involves un-
constrained smoothing followed by a constrained projection. He
and Shi (1998) and Koenker and Ng (2005) considered smoothing
splines subject to linear inequality constraints. In the current pa-
per, the monotonicity constraint is with regards to the quantiles,
giving rise to a different type of estimator than those discussed
above, and requiring different techniques for studying its statis-
tical properties. Note that He (1997), Dette and Volgushev (2008),
Bondell et al. (2010) and Chernozhukov et al. (2010) considered
monotonicity with respect to the quantiles. The connection with
their works is discussed later in the paper. Second, there is an ac-
tive literature that studies uniform confidence bands for nonpara-
metric conditional quantile functions; see Hardle and Song (2010)
and Koenker (2010). The former paper considered kernel-based
estimators and obtained confidence bands using strong approxi-
mations. The latter considered additive quantile models analyzed
with total-variation penalties and obtained confidence bands us-
ingHotelling’s tube formula. Their results are uniform in covariates
but pointwise in quantiles. Therefore, their results and ours com-
plement each other and, when jointly applied, allow one to probe
a broad spectrum of topics.

The paper is organized as follows. Section 2 introduces the is-
sue of interest. Section 3 presents the estimators while Section 4
establishes their asymptotic properties. Section 5 discusses the
bandwidth selection. Section 6 shows how to construct uniform
confidence bands and conduct hypothesis tests on the conditional
quantile process. Section 7 reports simulation results. Section 8
contains an empirical application and Section 9 concludes. All
proofs are in the two appendices, with Appendix A containing the
proofs of the main results and Appendix B some auxiliary lemmas.

The following notation is used. The superscript 0 indicates the
true value. ∥z∥ is the Euclidean norm of a vector z. 1(·) is the
indicator function. supp(f ) stands for the support of f . The symbols
‘‘⇒’’ and ‘‘→p’’ denote weak convergence under the Skorohod
topology and convergence in probability, and Op(·) and op(·) is the
usual notation for the orders of stochastic magnitude.

2. The issues of interest

Let (X, Y ) be an Rd+1-valued random vector, where Y is a scalar
response variable and X is an Rd-valued explanatory variable (X
does not include a constant). Let fY |X (·) and fX (·) be the conditional
density of Y and the marginal density of X . Denote the conditional
cumulative distribution of Y given X = x by FY |X (·|x) and its
conditional quantile at τ ∈ (0, 1) by Q (τ |x), i.e.,

Q (τ |x) = F−1
Y |X (τ |x) = inf


s : FY |X (s|x) ≥ τ


.

In this paper, Q (τ |x) is modeled as a general nonlinear function
of x and τ . We fix x and treat Q (τ |x) as a process in τ , where
τ ∈ T = [λ1, λ2] with 0 < λ1 ≤ λ2 < 1. Here, T falls
strictly within the unit interval in order to allow the conditional
distribution to have an unbounded support.

This paper has two goals. The first is to develop nonparamet-
ric estimators for the conditional quantile process. The second is
to provide some asymptotic results that can be used for construct-
ing uniform confidence bands and testing various hypotheses con-
cerning Q (τ |x). Throughout the paper, we assume {(xi, yi)}ni=1 is a
sample of n observations that are i.i.d. as (X, Y ). The following ex-
amples illustrate the above issues of interest. More discussionswill
follow in Section 6.
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