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a b s t r a c t

To estimate a sample quantile’s variance, the quantile spacing method involves smoothing parameterm.
Whenm, n → ∞, the corresponding Studentized test statistic is asymptotically N(0, 1). Holdingm fixed
instead, the asymptotic distribution contains the Edgeworth expansion term capturing the variance of the
quantile spacing. Consequently, the fixed-m distribution ismore accurate than the standard normal under
both asymptotic frameworks. A testing-optimalm is proposed to maximize power subject to size control.
In simulations, the newmethod controls size better than similar methods while maintaining good power.
Throughout are results for two-sample quantile treatment effect inference. Code is available online.
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1. Introduction

This paper considers inference on population quantiles, specif-
ically via the Studentized test statistic from Siddiqui (1960) and
Bloch and Gastwirth (1968) (jointly SBG hereafter), as well as in-
ference on quantile treatment effects in a two-sample (treatment/
control) setup. Median inference is a special case. Nonparamet-
ric inference on conditional quantiles is an immediate extension
if the conditioning variables are all discrete. In addition to com-
mon variables like race and sex, variables like years of education
may be treated as discrete as long as enough observations exist
for each value of interest. Continuous conditioning variables are
accommodated by the approach in Goldman and Kaplan (2014a),
whose code includes an implementation of this paper’s method.
Like a t-statistic for themean, the SBG statistic is normalized using
a consistent estimate of the variance of the quantile estimator, and
it is asymptotically standard normal.

Quantile treatment effects can enrich the usual average treat-
ment effect analysis in economic experiments, such as those
in Björkman and Svensson (2009), Charness and Gneezy (2009),
and Gneezy and List (2006). Quantile treatment effects have also
been discussed recently in Bitler et al. (2006) for welfare programs,
in Djebbari and Smith (2008) for the PROGRESA conditional cash
transfer program in Mexico, and in Jackson and Page (2013) for
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heterogeneous effects of class size in the Tennessee STAR pro-
gram. Quantiles have proved of interest across many other fields
within economics, such as health (Abrevaya, 2001), labor (Angrist
et al., 2006; Buchinsky, 1994), auctions (Guerre and Sabbah, 2012),
and land valuation (Koenker and Mizera, 2004). In finance, value-
at-risk (VaR) is defined as a quantile; this paper’s method can
construct a confidence interval for the VaR, using a ‘‘historical sim-
ulation’’ approach or that in Section 3 of Cabedo and Moya (2003).
In insurance, the Scenario Upper Loss (SUL) is an upper quantile of
the property loss distribution given an upper quantile magnitude
earthquake; the less consistently defined probable maximum loss
(PML) is similar and also widely used.

I develop new asymptotic theory that is more accurate than
the standard normal reference distribution traditionally used with
the SBG statistic. With more accuracy comes improved inference
properties, i.e. controlling size where previous methods were size-
distorted without sacrificing much power. A plug-in procedure
to choose the testing-optimal smoothing parameter m translates
the theory into practice. Inverting the level-α tests proposed
here yields level-α confidence intervals. I use hypothesis testing
language throughout, but size distortion is analogous to coverage
probability error, and higher power corresponds to shorter interval
lengths. It is also straightforward to solve numerically for p-values
using the higher-order critical value approximation since it is a
simple arithmetic correction of standard normal critical values.

The two key results here are a nonstandard ‘‘fixed-m’’ asymp-
totic distribution (wherem is a smoothing parameter used for Stu-
dentization) and a high-order Edgeworth expansion. For a scalar
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location model, Siddiqui (1960) gives the fixed-m result, and Hall
and Sheather (1988, hereafter cited as ‘‘HS88’’) give a special case
of the Edgeworth expansion in Theorem 2 below. The Edgeworth
expansion is more accurate than a standard normal since it con-
tains high-order terms that are otherwise ignored.

In the standard ‘‘large-m’’ asymptotics, both m → ∞ and
n → ∞ (and m/n → 0). In contrast, fixed-m asymptotics
only approximates n → ∞ while fixing m at its actual finite-
sample value. It turns out that the fixed-m asymptotics includes the
high-order Edgeworth term capturing the variance of the quantile
spacing in the Studentized quantile’s denominator. (Fixed-m is an
instance of ‘‘fixed-smoothing’’ asymptotics in that this variance
does not go to zero in the limit as in the ‘‘increasing-smoothing’’
large-m asymptotics.) Thus, from the theoretical view, the fixed-m
distribution is more accurate than the standard normal irrespec-
tive of the asymptotic framework: it is high-order accurate un-
der large-m, while the standard normal approximation is not even
first-order accurate under fixed-m.

The Edgeworth and fixed-m distributions also capture the effect
of the choice of m, whereas the standard normal approximation
does not. I construct a test dependent on m using the fixed-m
critical values and evaluate the type I and II error rates of the test
using the more accurate Edgeworth expansion. Then I optimally
selectm to minimize type II error subject to control of type I error.

This work builds partly on Goh (2004), who suggests fixed-m
asymptotics for Studentized quantile inference. Goh (2004) uses
simulated critical values and prior choices of m. Here, I provide
a simple, accurate fixed-m critical value approximation and
corresponding new optimal choice of m. I also show the improved
theoretical accuracy of the fixed-m distribution, complementing
the simulations in Goh (2004).

In the time series context of heteroskedasticity–autocorrelation
robust inference, the key ideas of ‘‘testing-optimal’’ smoothing
parameter choice, fixed-smoothing (or ‘‘fixed-b’’) asymptotics,
higher-order asymptotics, and corrected critical values based on
a common distribution appear in a sequence of papers by Sun
et al. (2008), Sun (2013, 2011, 2014), and Sun and Kaplan
(2011). In particular, analogous to the fixed-m results below, Sun
et al. (2008) show that their testing-optimal bandwidth is of
a different order than the MSE-optimal bandwidth, and Sun
(2011) generalizes the result from Sun et al. (2008) that shows
fixed-smoothing asymptotics to be a higher-order refinement of
increasing-smoothing asymptotics.

Whereas in HS88 the choice of m is critical to controlling size
(or not), the fixed-m critical values provide size control robust to
incorrectly chosen m. In simulations, the new method has correct
size even where the HS88 method is size-distorted. Power is still
good because m is explicitly chosen to maximize it, using the
Edgeworth expansion. HS88 do not provide a separate result for
the two-sample (quantile treatment effect) case.

Monte Carlo simulations show that the new method controls
size better than HS88 and various bootstrap methods, while main-
taining competitive power. Following a fractional order statistic
approach, the one-sample method of Hutson (1999), shown to
have O(n−1) coverage probability error by Goldman and Kaplan
(2014a), and the related two-sample method of Goldman and Ka-
plan (2014b) usually have better properties but are not always
computable. Thus, they complement the newmethodherein. Addi-
tionally, they produce equal-tailed confidence intervals, while the
newmethod’s intervals are symmetric; preferencemay depend on
the application. The new method also has a computational advan-
tage over both methods, especially the two-sample method.

The basic setup is in Section 2. Sections 3 and 4 concern fixed-
m and Edgeworth results, respectively. A consequently testing-
optimal choice of m is proposed in Section 5. Section 6 contains
simulation results. Two-sample results are provided in parallel.

More details are in the working paper version, and full technical
proofs and calculations are in the supplemental appendices (see
Appendix E). These and computer code are available on the author’s
website.

2. Quantile estimation and hypothesis testing

Consider an iid sample of continuous random variable X , whose
p-quantile is ξp. The estimator ξ̂p used in SBG is an order statistic.
The rth order statistic for a sample of n values is the rth smallest
value in the sample, Xn,r , such that Xn,1 < Xn,2 < · · · < Xn,n. The
SBG estimator is

ξ̂p = Xn,r , r = ⌊np⌋ + 1,

where ⌊np⌋ is the floor function. Writing the cumulative distribu-
tion function (CDF) of X as F(x) and the probability density func-
tion (PDF) as f (x) ≡ F ′(x), I make the usual assumption that f (x)
is positive and continuous in a neighborhood of the point ξp. Con-
sequently, ξp is the unique p-quantile such that F(ξp) = p.

The standard asymptotic result (Mosteller, 1946; Siddiqui,
1960) for a central1 quantile estimator is

√
n(Xn,r − ξp)

d
→ N


0, p(1 − p)


f (ξp)

−2


. (1)

A consistent estimator of 1/f (ξp) that is asymptotically indepen-
dent of Xn,r leads to the Studentized sample quantile, which has
the pivotal asymptotic distribution

√
n(Xn,r − ξp)

√
p(1 − p)


1/f (ξp)

 d
→ N(0, 1). (2)

Siddiqui (1960) and Bloch and Gastwirth (1968) propose and show
consistency of

1/f (ξp) = Sm,n ≡
n
2m

(Xn,r+m − Xn,r−m) (3)

whenm → ∞ and m/n → 0 as n → ∞.
For two-sided inference on ξp, I consider the parameterization

ξp = β −γ /
√
n. The null and alternative hypotheses are H0 : ξp =

β and H1 : ξp ≠ β , respectively. When γ = 0, the null is true. The
test statistic examined in this paper is

Tm,n ≡

√
n(Xn,r − β)

Sm,n
√
p(1 − p)

(4)

and will be called the SBG test statistic due to its use of (3).
From (2), Tm,n is asymptotically standard normal when γ = 0.
The corresponding hypothesis test compares Tm,n to critical values
from a standard normal distribution.

For the two-sample case, assume that there are independent
samples of X and Y , with nx and ny observations, respectively. For
simplicity, let n = nx = ny. For instance, if 2n individuals are
separated into balanced treatment and control groups, one might
want to test if the treatment effect at quantile p has significance
level α. The marginal PDFs are fX (·) and fY (·). Under the null
hypothesis H0 : ξpx = ξpy = ξp,
√
n(Xn,r − ξp) −

√
n(Yn,r − ξp)

d
→ N


0, p(1 − p)([fX (ξp)]−2

+ [fY (ξp)]−2)

,

1 ‘‘Central’’ means that in the limit, r/n → p ∈ (0, 1) as n → ∞; i.e., r → ∞

and is some fraction of the sample size n. In contrast, ‘‘intermediate’’ would take
r → ∞ but r/n → 0 (or r/n → 1, n − r → ∞); ‘‘extreme’’ would fix r < ∞ or
n − r < ∞.
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