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a b s t r a c t

It is well known that the discrete Fourier transforms (DFTs) of a second order stationary time series be-
tween two distinct Fourier frequencies are asymptotically uncorrelated. In contrast for a large class of
second order nonstationary time series, including locally stationary time series, this property does not
hold. In this paper these starkly differing properties are used to define a global test for stationarity based
on the DFT of a vector time series. It is shown that the test statistic under the null of stationarity asymp-
totically has a chi-squared distribution, whereas under the alternative of local stationarity asymptotically
it has a noncentral chi-squared distribution. Further, if the time series is Gaussian and stationary, the test
statistic is pivotal. However, in many econometric applications, the assumption of Gaussianity can be too
strong, but under weaker conditions the test statistic involves an unknown variance that is extremely
difficult to directly estimate from the data. To overcome this issue, a scheme to estimate the unknown
variance, based on the stationary bootstrap, is proposed. The properties of the stationary bootstrap under
both stationarity and nonstationarity are derived. These results are used to show consistency of the boot-
strap estimator under stationarity and to derive the power of the test under nonstationarity. The method
is illustrated with some simulations. The test is also used to test for stationarity of FTSE 100 and DAX 30
stock indexes from January 2011–December 2012.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In several disciplines, as diverse as finance and the biological
sciences, there has been a dramatic increase in the availability of
multivariate time series data. In order to model this type of data,
several multivariate time series models have been proposed, in-
cluding the Vector Autoregressive model and the vector GARCH
model, to name but a few (see, for example, Lütkepohl, 2005 and
Laurent et al., 2012). The majority of these models are constructed
under the assumption that the underlying time series is station-
ary. For some time series this assumption can be too strong, espe-
cially over relatively long periods of time. However, relaxing this
assumption, to allow for nonstationary time seriesmodels, can lead
to complex models with a large number of parameters, which may
not be straightforward to estimate. Therefore, before fitting a time
seriesmodel, it is important to checkwhether or not themultivari-
ate time series is second order stationary.
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Over the years, various tests for second order stationarity for
univariate time series have been proposed. These include, Priestley
and Subba Rao (1969), Loretan and Phillips (1994), von Sachs
and Neumann (1999), Paparoditis (2009, 2010), Dahlhaus and
Polonik (2009), Dwivedi and Subba Rao (2011), Dette et al. (2011),
Dahlhaus (2012, Example 10), Jentsch (2012), Lei et al. (2012)
and Nason (2013). However, as far as we are aware there does
not exist any tests for second order stationarity of multivariate
time series (Jentsch, 2012 does propose a test for multivariate
stationarity, but the test was designed to detect the alternative
of a multivariate periodically stationary time series). One crude
solution is to individually test for stationarity for each of the
univariate processes. However, there are a few drawbacks with
this approach. The first is that most multiple testing schemes use
a Bonferroni correction, which results in a test statistic which is
extremely conservative. The second problem is that such a strategy
can lead to misleading conclusions. For example if each of the
marginal time series are second order stationary, but the cross-
covariances are second order nonstationary, the above testing
schemewould not be able to detect the alternative. Therefore there
is a need to develop a test for stationarity of a multivariate time
series, which is the aim in this paper.

The majority of the univariate tests, are local, in the sense
that they are based on comparing the local spectral densities over
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various segments. This approach suffers from some possible disad-
vantages. In particular, the spectral density may locally vary over
time, but this does not imply that the process is second order non-
stationary, for example Hidden Markov models can be stationary
but the spectral density can vary according to the regime. For these
reasons, we propose a global test formultivariate second order sta-
tionarity.

Our test is motivated by the tests for detecting periodic sta-
tionarity (see, for example, Goodman, 1965, Hurd and Gerr, 1991,
Bloomfield et al., 1994 and Olhede and Ombao, 2013) and the test
for second order stationarity proposed in Dwivedi and Subba Rao
(2011), all these tests use fundamental properties of the discrete
Fourier transform (DFT). More precisely, the above mentioned pe-
riodic stationarity tests are based on the property that the discrete
Fourier transform is correlated if the difference in the frequencies
is a multiple of 2π/P (where P denotes the periodicity), whereas
Dwivedi and Subba Rao (2011) use the idea that the DFT asymp-
totically uncorrelates stationary time series, but not nonstation-
ary time series. Motivated by Dwivedi and Subba Rao (2011), in
this paper, we exploit the uncorrelating property of the DFT to
construct the test. However, the test proposed here differs from
Dwivedi and Subba Rao (2011) in several importantways, these in-
clude (i) our test takes into account the multivariate nature of the
time series, (ii) the test proposed here is defined such that it can de-
tect a wider range of alternatives and (iii) the test in Dwivedi and
Subba Rao (2011) assumes Gaussianity or linearity of the under-
lying time series (and calculates the power under the assumption
of Gaussianity), which in several econometric applications is unre-
alistic, whereas our test allows for testing of nonlinear stationary
time series.

In Section 2, we motivate the test statistic by comparing the
covariance between the DFT of stationary and nonstationary time
series,wherewe focus on the large class of nonstationary processes
called locally stationary time series (see Dahlhaus, 1997, Dahlhaus
and Polonik, 2006 and Dahlhaus, 2012 for a review). Based on
these observations, we define DFT covariances which in turn
are used to define a Portmanteau-type test statistic. Under the
assumption of Gaussianity, the test statistic is pivotal, however
for non-Gaussian time series the test statistic involves a variance
which is unknown and extremely difficult to estimate. If we were
to ignore this variance (and thus implicitly assume Gaussianity)
then the test can be unreliable. Therefore in Section 2.4we propose
a bootstrap procedure, based on the stationary bootstrap (first
proposed in Politis and Romano, 1994), to estimate the variance.
In Section 3, we derive the asymptotic sampling properties of
the DFT covariance. We show that under the null hypothesis, the
mean of the DFT covariance is asymptotically zero. In contrast,
under the alternative of local stationarity, we show that the DFT
covariance estimates nonstationary characteristics in the time
series. These results are used to derive the sampling distribution
of the test statistic. Since the stationary bootstrap is used to
estimate the unknown variance, in Section 4, we analyze the
stationary bootstrap when the underlying time series is stationary
and nonstationary. Some of these results may be of independent
interest. In Section 5we show that under (fourth order) stationarity
the bootstrap variance estimator is a consistent estimator of the
true variance. In addition, we analyze the bootstrap variance
estimator under nonstationarity and show that it has an influence
on the power of the test. The test statistic involves some tuning
parameters and in Section 6.1, we give some suggestions on how
to select these tuning parameters. In Section 6.2, we analyze the
performance of the test statistic under both the null and the
alternative and compare the test statistic when the variance is
estimated using the bootstrap and when Gaussianity is assumed.
In the simulations we include both stationary GARCH and Markov
switchingmodels and for nonstationary models we consider time-
varying linear models and the random walk. In Section 6.3, we

apply our method to analyze the FTSE 100 and DAX 30 stock
indexes. Typically, stationary GARCH-type models are used to
model this type of data. However, even over the relatively short
period January 2011–December 2012, the results from our test
suggest that the log returns are nonstationary.

The proofs can be found in the Appendix.

2. The test statistic

2.1. Motivation

Let us suppose {X t = (Xt,1, . . . , Xt,d)
′, t ∈ Z} is a d-dimensional

constant mean, multivariate time series and we observe {X t}
T
t=1.

We define the vector discrete Fourier transform (DFT) as

J
T
(ωk) =

1
√
2πT

T
t=1

X te
−itωk , k = 1, . . . , T ,

where ωk = 2π k
T are the Fourier frequencies. Suppose that {X t}

is a second order stationary multivariate time series, where the
autocovariance matrices of {X t} satisfy

∞
h=−∞

|h| · |cov(Xh,j1 , X0,j2)| < ∞ for all j1, j2 = 1, . . . , d. (2.1)

It is well known for k1 − k2 ≠ 0, that cov(JT ,m(ωk1), JT ,n(ωk2)) =

O( 1
T ) (uniformly in T , k1 and k2), in other words the DFT has

transformed a stationary time series into a sequence which is ap-
proximately uncorrelated. The behavior in the case that the vec-
tor time series is second order nonstationary is very different. To
obtain an asymptotic expression for the covariance between the
DFTs, we will use the rescaling device introduced by Dahlhaus
(1997) to study locally stationary time series, which is a class
of nonstationary processes. {X t,T } is called a locally second order
stationary time series, if its covariance structure changes slowly
over time such that there exist smooth matrix functions {κ(·; r)}r
which can approximate the time-varying covariance matrices.
More precisely, |cov(X t,T , X τ ,T ) − κ( τ

T ; t − τ)|1 ≤ T−1κ(t − τ),
where


h κ(h) < ∞. An example of a locally stationary model

which satisfies these conditions is the time-varying moving aver-
age model defined in Dahlhaus (2012, Eqs. (63)–(65)) (with ℓ(j) =

log(|j|)1+ε
|j|2 for |j| ≠ 0). It is worth mentioning that Dahlhaus

(2012) uses the slightly weaker condition ℓ(j) = log(|j|)1+ε
|j|. In

the Appendix (Lemma A.8), we show that

cov(J
T
(ωk1), JT (ωk2))

=

 1

0
f(u; ωk1) exp(−i2πu(k1 − k2))du + O


1
T


, (2.2)

uniformly in T , k1 and k2, where f(u; ω) =
1
2π


∞

h=−∞
κ(u; h) ×

exp(−ihω) is the local spectral density matrix (see Lemma A.8 for
details).We recall if {X t}t is second order stationary then the ‘spec-
tral density’ function f(u; ω) does not depend on u and the above
expression reduces to cov(J

T
(ωk1), JT (ωk2)) = O( 1

T ) for k1 − k2 ≠

0. It is interesting to observe that for locally stationary time series
its DFT sequence mimics the behavior of a time series, in the sense
that the correlation between the DFTs decays the further apart the
frequencies.

A further, related motivation for our test is that a time series
{X t} is second order stationary if and only if it admits the Fourier–
Stieltjes integral (Cramér Representation)

X t =

 2π

0
exp(itω)dZ(ω), (2.3)

where {Z(ω); ω ∈ [0, 2π ]} is an orthogonal increment vector pro-
cess (see for example, Yaglom (1987), Chapter 2). The DFT J

T
(ωk)
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