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a b s t r a c t

This paper develops asymptotic theory for a nonlinear parametric cointegrating regression model. We
establish a general framework for weak consistency that is easy to apply for various nonstationary time
series, including partial sums of linear processes and Harris recurrent Markov chains. We provide limit
distributions for nonlinear least square estimators, extending the previous works. We also introduce
endogeneity to the model by allowing the error to be serially dependent on and cross correlated with
the regressors.
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1. Introduction

The past few decades have witnessed significant developments
in cointegration analysis. In particular, extensive researches have
focused on cointegration models with linear structure. Although it
gives data researchers convenience in implementation, the linear
structure is often too restrictive. In particular, nonlinear responses
with some unknown parameters often arise in the context of
economics. For empirical examples, we refer to Granger and
Teräsvirta (1993) aswell as Teräsvirta et al. (2011). In this situation,
it is expected that the nonlinear cointegration model captures the
features ofmany long-run relationships in amore realisticmanner.

A typical nonlinear parametric cointegrating regression model
has the form

yt = f (xt , θ0)+ ut , t = 1, . . . , n, (1)

where f : R × Rm
→ R is a known nonlinear function, xt and

ut are regressor and regression errors, and θ0 is an m-dimensional
true parameter vector that lies in the parameter set Θ . With the
observed nonstationary data {yt , xt}nt=1, this paper is concerned
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with the nonlinear least square (NLS) estimation of the unknown
parameters θ0 ∈ Θ . In this regard, Park and Phillips (2001) (PP
henceforth) considered xt to be an integrated, I(1), process. Based
on PP framework, Chang et al. (2001) introduced an additional
linear time trend term and stationary regressors into the model
(1). Chang and Park (2003) extended it to nonlinear index models
driven by integrated processes. More recently, Choi and Saikkonen
(2010), Gao et al. (2009) and Wang and Phillips (2012) developed
statistical tests for the existence of a nonlinear cointegrating
relation. Park and Chang (2011) allowed the regressors xt to be
contemporaneously correlated with the regression errors ut and
Shi and Phillips (2012) extended the model (1) by incorporating a
loading coefficient.

The present paper has a similar goal to the previously men-
tioned papers but offers some more general results, which have
some advantages for empirical studies. First of all, we establish a
general framework for weak consistency of the NLS estimator θ̂n,
allowing for the xt to be a wider class of nonstationary time series.
The set of sufficient conditions is easy to apply for various nonsta-
tionary regressors, including partial sums of linear processes and
recurrent Markov chains. Furthermore, we provide limit distribu-
tions for the NLS estimator θ̂n. It deserves to mention that the rou-
tine employed in this paper to establish the limit distributions of
θ̂n is different from those used in the previous works, e.g. Park and
Phillips (2001). Roughly speaking, our routine is related to the joint
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distributional convergence of a martingale under target and its
conditional variance, rather than using classical martingale limit
theorem which requires establishing the convergence in probabil-
ity for the conditional variance. In nonlinear cointegrating regres-
sions, there are some advantages for our methodology since it is
usually difficult to establish the convergence in probability for the
conditional variance, in particular, in the situation that the regres-
sor xt is a nonstationary time series. Second, in addition to the com-
monly used martingale innovation structure, our model allows for
serial dependence in the equilibrium errors ut and the innovations
driving xt . It is important as ourmodel permits joint determination
of xt and yt , and hence the system is a time series structural model.
Under such situation, the weak consistency and limit distribution
of the NLS estimator θ̂n are also established.

This paper is organized as follows. Section 2 presents our main
results on weak consistency of the NLS estimator θ̂n. Theorem 2.1
provides a general framework. Its applications to integrable and
non-integrable f are given in Theorems 2.2–2.5, respectively. Sec-
tion 3 investigates the limit distributions of θ̂n in which the model
(1) has a martingale structure. Extension to endogeneity is pre-
sented in Section 4. As mentioned above, our routine establishing
the limit distribution of θ̂n is different from previous works. Sec-
tion 5 performs simulation, and discusses the numerical values of
means and standard errors which provide the evidence of accura-
cies of our NLS estimator. Section 6 presents an empirical exam-
ple, providing a link between our theory and real applications. The
model of interest is the carbonKuznets curve relating the per capita
CO2 emissions and per capita GDP. Endogeneity occurs in this ex-
ample due to potential misreporting of GDP, omitted variable bias
and reverse causality. Section 7 concludes the paper. Section 8 pro-
vides partial technical proofs. Full details of the technical proofs
can be found in the supplemental material of this paper (see Ap-
pendix A), where we also provide a unit root test for our empirical
example, and other details for simulation.

Throughout the paper, we denote constants by C, C1, C2, . . .
which may be different at each appearance. For a vector x =

(x1, . . . , xm), assume that ∥x∥ = (x21+· · ·+x2m)
1/2, and for amatrix

A, the norm operator ∥ · ∥ is defined by ∥A∥ = supx:∥x∥=1 ∥xA∥. Fur-
thermore, the parameter set Θ ⊂ Rm is assumed to be compact
and convex, and the true parameter vector θ0 is an interior point
ofΘ .

2. Weak consistency

This section considers the estimation of the unknown parame-
ters θ0 in model (1) by NLS. Let Qn(θ) =

n
t=1(yt − f (xt , θ))2. The

NLS estimator θ̂n of θ0 is defined to be the minimizer of Qn(θ) over
θ ∈ Θ , that is,

θ̂n = argminθ∈Θ Qn(θ), (2)

and the error estimator is defined by σ̂ 2
n = n−1n

t=1 û
2
t , where

ût = yt − f (xt , θ̂n). To investigate the weak consistency for the
NLS estimator θ̂n, this section assumes the regression model (1)
to have a martingale structure. In this situation, our sufficient
conditions are closely related to those of Wu (1981), Lai (1994)
and Skouras (2000), intending to provide a general framework. In
comparison to the papers mentioned, our assumptions are easy to
apply, particularly in nonlinear cointegrating regression situation
as stated in the two examples below. Extension to endogeneity
between xt and ut is investigated in Section 4.

2.1. A framework

Wemake use of the following assumptions for the development
of weak consistency.

Assumption 2.1. For each π, π0 ∈ Θ , there exists a real function
T : R → R such that

|f (x, π)− f (x, π0)| ≤ h(∥π − π0∥) T (x), (3)

where h(x) is a bounded real function such that h(x) ↓ h(0) = 0,
as x ↓ 0.

Assumption 2.2. (i) {ut ,Ft , 1 ≤ t ≤ n} is a martingale
difference sequence satisfying E(|ut |

2
|Ft−1) = σ 2 and

sup1≤t≤n E(|ut |
2q

|Ft−1) < ∞ a.s., where q > 1; and
(ii) xt is adapted to Ft−1, t = 1, . . . , n.

Assumption 2.3. There exists an increasing sequence 0 < κn →

∞ such that

κ−2
n

n
t=1

[T (xt)+ T 2(xt)] = OP(1), (4)

and for any 0 < η < 1 and θ ≠ θ0, where θ, θ0 ∈ Θ , there exist
n0 > 0 andM1 > 0 such that

P


n

t=1

(f (xt , θ)− f (xt , θ0))2 ≥ κ2
n /M1


≥ 1 − η, (5)

for all n > n0.

Theorem 2.1. Under Assumptions 2.1–2.3, the NLS estimator θ̂n is a
consistent estimator of θ0, i.e. θ̂n →P θ0. If in addition κ2

nn
−1

= O(1),
then σ̂ 2

n →P σ
2, as n → ∞.

Assumptions 2.1 and 2.2 are the same as those used in
Skouras (2000), which are standard in the NLS estimation theory.
Also see Wu (1981) and Lai (1994). Assumption 2.3 is used to
replace (3.8), (3.9) and (3.11) in Skouras (2000), in which some
uniform conditions are used. In comparison to Skouras (2000), our
Assumption 2.3 is related to the conditions on the regressor xt
and is more natural and easy to apply. In particular, it is directly
applicable in the situation that T is integrable and the regressor xt is
a nonstationary time series, as stated in the following sub-section.

2.2. Assumption 2.3: integrable functions

Due to Assumption 2.1, f (x, θ) − f (x, θ0) is integrable in x
if T is an integrable function. This class of functions includes
f (x, θ1, θ2) = θ1|x|θ2 I(x ∈ [a, b]), where a and b are finite
constants, the Gaussian function f (x, θ) = e−θx2 , the Laplacian
function f (x, θ) = e−θ |x|, the logistic regression function f (x, θ) =

eθ |x|/(1 + eθ |x|), etc. In this sub-section, two commonly used non-
stationary regressors xt are shown to satisfy Assumption 2.3 if T is
integrable.

Example 1 (Partial Sums of Linear Processes). Let xt =
t

j=1 ξj,
where {ξj, j ≥ 1} is a linear process defined by

ξj =

∞
k=0

φk ϵj−k, (6)

where {ϵj,−∞ < j < ∞} is a sequence of i.i.d. random variables
with Eϵ0 = 0, Eϵ20 = 1 and the characteristic function ϕ(t) of ϵ0
satisfying


∞

−∞
|ϕ(t)|dt < ∞. The coefficients φk are assumed to

satisfy one of the following conditions:
C1. φk ∼ k−µρ(k), where 1/2 < µ < 1 and ρ(k) is a function

slowly varying at ∞.
C2.


∞

k=0 |φk| < ∞ and φ ≡


∞

k=0 φk ≠ 0.
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