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a b s t r a c t

In this paper,we propose a flexible, parametric class of switching regimemodels allowing for both skewed
and fat-tailed outcome and selection errors. Specifically, wemodel the joint distribution of each outcome
error and the selection error via a newly constructed class of multivariate distributions which we call
generalized normal mean–variance mixture distributions. We extend Heckman’s two-step estimation
procedure for the Gaussian switching regimemodel to the new class of models. When the distributions of
the outcome errors are asymmetric, we show that an additional correction term accounting for skewness
in the outcome error distribution (besides the analogue of the well known inverse mill’s ratio) needs to
be included in the second step regression. We use the two-step estimators of parameters in the model
to construct simple estimators of average treatment effects and establish their asymptotic properties.
Simulation results confirm the importance of accounting for skewness in the outcome errors in estimating
both model parameters and the average treatment effect and the treatment effect for the treated.
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1. Introduction1

Switching regime models (SRMs) extend the Roy model of self-
selection by allowing a more general decision rule for selecting
into different states. The income maximizing Roy model of self-
selection was developed to explain occupational choice and its
consequences for the distribution of earningswhen individuals dif-
fer in their endowments of occupation-specific skills, see Heckman
and Honore (1990). By allowing a more general decision/selection
rule, SRMs enjoy a much wider scope of applications than the Roy

✩ This is a substantially revised version of a previous paper entitled ‘‘Simple
Estimators of Switching Regimes Models with Normal Mean-Variance Mixture
Copulas and Average Treatment Effects’’. We are grateful to the Editor, Cheng Hsiao,
and two anonymous referees for their insightful comments which have led to the
current much improved paper.
∗ Correspondence to: Department of Economics, University of Washington,

Seattle, WA, 98195-3330, USA. Tel.: +1 206 543 8172.
E-mail address: fany88@u.washington.edu (Y. Fan).

1 Parts of this section are based on the insightful comments of an anonymous
referee on an earlier version of this paper.

model. Recently, SRMs have been used to evaluate average effects
of a policy intervention using choice data. Heckman et al. (2003)
derive expressions for four treatment effect parameters for a
Gaussian copula SRM and a Student’s t copula SRM with normal
outcome errors and non-normal selection error.2 These are the av-
erage treatment effect (ATE), the treatment effect for the treated
(TT), the local average treatment effect (LATE, Imbens and Angrist,
1994), and themarginal treatment effect (MTE, Bjorklund andMof-
fitt, 1987; Heckman, 1997; Heckman and Vytlacil, 1999, 2000a,b,
2005).

One of the most commonly used SRMs in empirical work is
the Gaussian SRM in which the vector of outcome errors and the
selection error follows a trivariate normal distribution. One rea-
son for its popularity is the simplicity of Heckman’s two-step pro-
cedure for estimating the Gaussian SRM introduced in Heckman
(1976). The Gaussian SRM has been extended to allow for non-
normal marginal distributions in the errors in Lee (1982, 1983),

2 They did not use the concept of copulas, but their models can be interpreted in
this way.
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Heckman et al. (2003), and Li et al. (2004). Themodels in Heckman
et al. (2003) essentially assume that the trivariate error vector fol-
lows a distribution with either the Gaussian copula or a trivariate
Student’s t copula. When the outcome errors are normal or Stu-
dent’s t and the selection error has any parametric distribution
(known up to a finite dimensional parameter vector), Lee (1982,
1983), and Heckman et al. (2003) show that the model parameters
can be consistently estimated by a two-step procedure extending
Heckman’s two-step procedure for the Gaussian SRM. By extend-
ingHeckman’s two-step procedure to Student’s t outcome error(s),
fat-tailed outcome error(s) can be accounted for in the two-step
procedure of Lee (1982, 1983), Heckman et al. (2003). Indeed sim-
ulation results in Heckman et al. (2003) show that their two-step
estimation procedure works well for fat-tailed distributions when
used to estimate ATE, TT, and LATE and that for ATE, TT, even Heck-
man’s two-step procedure based on the Gaussian SRM yields mi-
nor biases. For skewed outcome distributions, however, the results
are completely different; the sensitivity of parameter estimates in
the Gaussian SRM to asymmetric outcome distributions was long
recognized in the statistics literature, see Little (1982) and refer-
ences therein. Although not reported in their paper, Heckman et al.
(2003) mention in their Footnote 7 that ‘When generating data
from highly asymmetric distributions, such as a χ2 (3), we do see
larger biases’ (in the estimates of ATE and TT).

Work in the semiparametric literature, on the other hand, es-
timate SRMs without imposing parametric distributional assump-
tions on the error vector, see, e.g., Newey et al. (1990), Ahn and
Powell (1993) and Das et al. (2003), among others. These estimates
are thus robust to possible misspecification in the distribution of
the error vector. However, as pointed out in Heckman (1990), most
of these approaches only estimate slopeparameters of the outcome
equations excluding intercepts of the outcome equations, and thus
cannot be used to estimate average treatment effect parameters.
Furthermore, without additional distributional assumptions, it is
not possible to identify the standard treatment effect parame-
ters without invoking identification-at-infinity arguments that re-
quire instruments with unbounded support, and even with such
assumptions, the standard treatment effect parameters can only be
estimated at a nonparametric rate, see e.g., Andrews and Schafgans
(1998). The recent work by Heckman and Vytlacil (1999, 2000a,b,
2005) and others have been semiparametric and focused on aver-
age treatment effect parameters, but again they face the trade-off
between pursuing nontraditional treatment effect parameters (the
MTE parameter) for which they can only obtain a slow rate of con-
vergence, or the traditional treatment effect parameters for which
they either need to do a bounding analysis or have large support
assumptions inwhich case they identify the standard treatment ef-
fect parameters that can only be estimated at a slow rate of conver-
gence. The requirement for extremely large samples to implement
the Heckman–Vytlacil approach is one of the reasons to consider
parametric estimation as in Heckman et al. (2003). Likewise, the
inability of thesemodels to identify traditional treatment effect pa-
rameters without relying on identification-at-infinity is the reason
that Chamberlain (2010) advocates imposing a flexible parametric
model.

Chen (1999) presents an alternative semiparametric approach
to identify the intercepts of the outcome equations and estimate
them at the parametric rate. But his approach relies critically on
symmetry of the distribution of the error vector. This paper pro-
poses a flexible, parametric method for estimating SRMs and the
corresponding treatment effect parameters allowing for asymmet-
ric and fat-tailed outcome (and selection) errors. It makes two
main contributions to the econometrics and statistics literatures.
First, it introduces the class of multivariate Generalized Normal
Mean–Variance Mixture (GNMVM) distributions and the associ-
ated copulas. To the best of the authors’ knowledge, the class of

multivariate GNMVM distributions is new. It overcomes the se-
vere drawback of the class of multivariate NMVM distributions
that the only multivariate NMVM distribution with independent
marginal distributions is that of multivariate normal, see Mc-
Neil et al. (2005). In contrast, the class of multivariate GNMVM
allows for independent, but skewed/non-normal marginal distri-
butions. Copulas associated with GNMVM distributions include
Gaussian, Student’s t , and skewed t copulas. As shown in Demarta
and McNeil (2005), skewed t copulas exhibit asymmetric and dif-
ferent left and right tail dependence. Using the class of multivari-
ate GNMVM distributions/copulas, we construct a new class of
SRMs referred to as the GNMVM-SRMs/GNMVMC-SRMs in which
the bivariate distributions of each outcome error and the selec-
tion error are assumed to follow either a GNMVM distribution or
a distribution with a GNMVM copula and any parametric marginal
distributions. The Gaussian copula and Student’s t copula SRMs in
Heckman et al. (2003) are members of GNMVMC-SRMs.3 Gaussian
and Student’s t SRMs inChib (2005) aremembers ofGNMVM-SRMs
which also include SRMs with multi-modal and skewed error dis-
tributions.More importantly, the class of GNMVM-SRMs allows for
independent asymmetric outcome errors and selection error, so
asymmetry in the observed outcome distributions could be due to
either asymmetric outcome errors or selection.

The second contribution of this paper is to develop a two-
step estimation procedure for the class of GNMVM-SRMs further
extending Heckman’s two-step procedure for the Gaussian SRM.
In the first step, we propose a novel simulation-based EM algo-
rithm for estimating the selection equation and in the second
step, we use OLS to estimate two linear regressions each with
two correction terms resulting in estimators of parameters in each
outcome equation. Using the two-step procedure, we construct
estimators of ATE, TT, LATE, and MTE in GNMVM-SRMs and estab-
lish their asymptotic properties. In addition to the extension of the
Inverse-Mills ratio in Heckman’s two-step procedure, there is an
additional correction term in the second step regression for esti-
mating GNMVM-SRMs. As a result, applying Heckman’s two-step
procedure to SRMs with skewed outcome distributions may lead
to inconsistent estimators of parameters in the potential outcome
equations and of the four treatment effect parameters. Our simu-
lation results using asymmetric outcome distributions also reveal
large biases in the estimates of parameters in SRMs and/or of ATE
and TT if skewness is not accounted for in the estimation proce-
dure. In contrast, our two-step procedure allowing for skewness
in the outcome distributions performs very well. We also extend
our two-step estimation procedure for GNMVM-SRMs to the sub-
class of GNMVMC-SRMs in which the outcome errors follow uni-
variate NMVM distributions and the selection error follows any
parametric distribution. In general, the second step for the sub-
class of GNMVMC-SRMs may involve a nonlinear regression, but
for certain members of GNMVM copulas such as Gaussian copula
or Student’s t copulawith a known degree of freedom in Lee (1982,
1983), Heckman et al. (2003), the second step regression is linear.

The rest of this paper is organized as follows. In Section 2, we
introduce the class of GNMVMC-SRMs and some special cases.
In Section 3, we propose a two-step procedure for estimating
parameters in the potential outcome equations in GNMVM-SRMs
and GNMVMC-SRMs when the outcome errors follow NMVM
distributions. In Section 4, we use our two-step estimation
procedure to construct estimators of ATE, TT, LATE, and MTE,
extending the estimators of Heckman et al. (2003) to a much
wider class of SRMs. We present results from a small Monte Carlo
simulation study in Section 5. Section 6 concludes. Technical proofs
are relegated to the Appendix.

3 In fact, Heckman et al. (2003) impose a trivariate Gaussian or Student’s t copula
structure on the trivariate error vector as opposed to bivariate Gaussian or Student’s
t copula structure on each bivariate vector of an outcome error and selection error
separately.
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