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a b s t r a c t

We construct a spot volatility estimator for high-frequency financial data which contain market mi-
crostructure noise. We prove consistency and derive the asymptotic distribution of the estimator. A data-
drivenmethod is proposed to select the scale parameter and the bandwidth parameter in the estimator. In
Monte Carlo simulations, we compare the finite sample performance of our estimator with some existing
estimators. Empirical examples are given to illustrate the potential applications of the estimator.
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1. Introduction

Spot volatility, also known as instantaneous volatility, measures
the strength of return variations at a certain time point, ex-
pressed per unit of time (Andersen et al. (2010)). Spot volatility
has important applications in studying the intraday patterns of the
volatility process, testing price jumps (Lee and Mykland (2007),
Veraart (2010)), and estimating parametric stochastic volatility
models (Bandi and Reno (2009), Kanaya and Kristensen (2010)).
In this paper, we are interested in the nonparametric estimation of
spot volatilitywith high-frequency financial data.

Spot volatility estimation in the literature dates back to Mer-
ton (1980), who considered a constant volatility model. Later on,
researchers tended to estimate volatility in the context of the
ARCHmodel (Engle (1982)), the GARCHmodel (Bollerslev (1986)),
and their numerous variations. Nonparametric estimation of spot
volatility in the context of diffusion models was firstly considered
by Foster and Nelson (1996). Andreou and Ghysels (2002) con-
ducted simulation studies using Foster and Nelson’s estimator and
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some related estimators. Recent contributions include Mykland
and Zhang (2008), Fan and Wang (2008) and Kristensen (2010).

High-frequency financial data have becomemore accessible for
academic research in recent years. In contrast to low frequency
(daily, weekly or longer sampling frequency) financial datasets,
high-frequency datasets are characterized by the large number of
observations they contain and the existence of so-called market
microstructure noise. O’Hara (1998) made theoretical studies of
market microstructure noise; Andersen et al. (2000) and Hansen
and Lunde (2006) analyzed the empirical characteristics of the
noise.

Existing research on volatilitymeasurement for high-frequency
data focuses mainly on the ex post nonparametric measurement
of the integrated volatility of the underlying efficient price process.
Andersen et al. (2001) and Barndorff-Nielsen and Shephard
(2002) made important early contributions to the use of realized
variance to estimate the integrated volatility. However, they did
not consider the effects of market microstructure noise, and
the realized variance estimator can only be applied to sparsely
sampled data, where the effects of noise are small. The problem
of estimating integrated volatility under noise was first studied by
Zhou (1996), who gave an unbiased but inconsistent estimator for
integrated volatility. Aït-Sahalia et al. (2005) considered a constant
variance model and gave a Maximum Likelihood Estimator for the
constant variance. Later, four types of estimators were proposed
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for estimating integrated volatility in the presence of noise. These
are the subsampling-based Two Scale Realized Variance (TSRV)
estimator by Zhang et al. (2005) and the Multiscale Realized
Variance (MSRV) estimator by Zhang (2006); the Realized Kernel
(RK) estimator by Barndorff-Nielsen et al. (2008), which is based
on Zhou (1996)’s first order moving average correction; the pre-
averaging method by Podolskij and Vetter (2009), and Jacod et al.
(2009); and the Quasi-Maximum Likelihood Estimator (QMLE) by
Xiu (2010), which is based on the estimator in Aït-Sahalia et al.
(2005).

In this paper, we study the problem of estimating spot volatility
with high-frequency data and we explicitly consider the effects
of market microstructure noise. Our approach is closely related to
the literature on integrated volatilitymeasurementwith noise.We
construct our estimator based on the Two Scale Realized Variance
estimator by Zhang et al. (2005) — our estimator calculates the
increment of the Two Scale Realized Variance estimator over a
small interval and applies an appropriate normalization. Under
appropriate conditions, we prove consistency and derive the
asymptotic distribution of our estimator and propose a data-driven
procedure to select tuning parameters. In practically meaningful
Monte Carlo simulations, we compare our estimator with existing
methods in terms of several error measures and we demonstrate
the improved accuracy in using our estimator.

Some recent research is closely related to this paper. Mykland
and Zhang (2008) independently proposed the same estimator as
in our paper, but did not provide a complete asymptotic theory.
Bandi and Reno (2009), Ogawa and Sanfelici (2011), Bos et al.
(2012), among others, have considered spot volatility estimators
based on the Realized Kernel estimator and the Pre-Averaging
estimator. In a concurrent paper, Mancini et al. (2012) (Section 3.1)
have proposed a two-scale estimator for spot volatility weighted
by the so-called delta sequence and have provided theoretical
analysis; our estimator is a special case of their estimator with
equal weights. We provide more comprehensive asymptotic and
finite sample studies for our estimator; we also study the problem
of bandwidth and scale parameters selection, which is important
for practical implementation. In the presence of jumps butwithout
noise, spot volatility has been studied by Aït-Sahalia and Jacod
(2009), Ngo and Ogawa (2009) and Andersen et al. (2009).
Munk and Schmidt-Hieber (2010b,a) studied the best possible
convergence rate of any spot volatility estimator in a volatility
model observedwith noise,where the volatility process is assumed
to be a deterministic function. Hoffmann et al. (2010) derived
a minimax bound for the same problem in a genuine stochastic
volatility model observed with noise, they showed that this bound
is ‘‘nearly optimal’’ in their definition and they proposed a wavelet
estimator that achieves this rate. Their rate is n−1/8 if translated
to the present context, up to some logarithmic corrections. Our
estimator does not have the best rate of convergence in their sense,
we discuss possible extensions to improve the convergence rate in
Section 6.

The structure of this paper is as follows. Section 2 introduces
the setup of the problem. Section 3 defines the estimator, studies
its asymptotic properties and the problem of bandwidth and scale
selection. Section 4 conducts Monte Carlo studies on the finite-
sample properties of the estimator and Section 5 contains two
empirical applications to Euro FX futures data. Section 6 discusses
possible extensions to our model. Section 7 concludes the paper.
Proofs are collected in Appendix A and technical lemmas are
collected in Appendix B.

Throughout the paper, ⟨X, Y ⟩ denotes the quadratic covariation
of two processes X and Y ;

d
−→ denotes converge in distribution;

st
−→

denotes stable convergence in distribution;
p
−→ denotes converge

in probability; for a real number x, ⌊x⌋ denotes its integer part. We

call σ 2
t the spot variance at time t , andwe call σt the spot volatility at

time t . However, as in the financial econometrics literature, when
we use the term spot volatility in general discussions, it could refer
to either σ 2

t or σt , depending on the context.

2. The model

Let {Xt} be a univariate log price process, assumed to be a
Brownian semimartingale, satisfying

dXt = µtdt + σtdWt , t ∈ [0, 1],

where {Wt} is a standard Brownian motion; {µt} is the spot drift
process, and {σt} is the spot volatility process; both are predictable.
We further assume:

A1 the processes {µt} and {σt} have continuous sample paths.
A2 the process {σt} is positive.

Since X is a Brownian semimartingale, it has continuous sample
paths, and its quadratic variation process satisfies

⟨X, X⟩t =

 t

0
σ 2
s ds, t ∈ [0, 1],

such that the spot volatility satisfies

σ 2
t =

d ⟨X, X⟩t

dt
. (1)

Taking into account the market microstructure noise existing in
high-frequency financial data, we further assume

A3 X is not observable, but

Yt = Xt + εt

is observed over the interval [0, 1] in discrete time over a grid
ti = i/n for i = 0, 1, . . . , nwith equal distance ∆n = 1/n.

A4 {εti}
n
i=1 are independent and identically distributed (i.i.d.)

with mean 0, variance ω2, and with finite fourth moment.
Furthermore, {εti}

n
i=1 are independent of the {Xt} process.

The continuity assumption on the volatility sample paths ac-
commodates a large class of spot variance processes such as dif-
fusion processes, long memory, deterministic patterns as well as
nonstationarity. The model allows for possible dependence be-
tween {Wt} and {σt}, so leverage effects are allowed in this model.

The model specification and Assumption A1 exclude the possi-
bility of jumps in both the price process and the volatility process.
Assumption A4 excludes the possibility that the noise is dependent
over time (so called dependent noise) and that the noise is depen-
dent of the efficient price process (so-called endogenousnoise).We
discuss possible extensions to these cases in Section 6.

3. The estimator and its properties

3.1. The estimator

We are interested in estimating the realization of the spot
variance process


σ 2
t


at any time t ∈ (0, 1). Our estimator is based

on the TwoScale RealizedVariance estimator (TSRV) by Zhang et al.
(2005).

The TSRV estimator uses a subsampled and averaged Realized
Variance (RV) estimator over a scale K , together with a usual
Realized Variance estimator to correct the effects of noise. It is
defined as

TSRV = [Y , Y ]
K

−
n̄
n
[Y , Y ],
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