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a b s t r a c t

This paper introduces a new method for estimating variance matrices. Starting from the orthogonal
decomposition of the sample variance matrix, we exploit the fact that orthogonal matrices are never
ill-conditioned and therefore focus on improving the estimation of the eigenvalues. We estimate the
eigenvectors from just a fraction of the data, then use them to transform the data into approximately
orthogonal series that deliver a well-conditioned estimator (by construction), even when there are fewer
observations than dimensions.We also show that our estimator has lower error norms than the traditional
one. Our estimator is design-free: we make no assumptions on the distribution of the random sample or
on any parametric structure the variance matrix may have. Simulations confirm our theoretical results
and they also show that our simple estimator does very well in comparison with other existing methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Apart from calculating the mean, estimating the variance of a
random vector is the most basic problem in statistics. It has nu-
merous applications in sciences, social sciences, and humanities.
Examples go from financial time series, where variance matrices
are used as a measure of risk, to molecular biology, where they are
used for gene classification purposes. Yet the estimation of vari-
ancematrices is a statistically challenging problem, since the num-
ber of parameters grows as a quadratic function of the number
of variables. To make things harder, conventional methods deliver
nearly-singular (ill-conditioned) estimators when the dimension k
of the matrix is large relative to the sample size n. As a result, es-
timators are very imprecise and operations such as matrix inver-
sions amplify the estimation error further.

One strand of the literature has tackled this problem by trying
to come upwithmethods that are able to achieve a dimensionality
reduction by exploiting sparsity, imposing zero restrictions on
some elements of the variancematrix. Wu and Pourahmadi (2003)
and Bickel and Levina (2008a) propose banding methods to find
consistent estimators of variance matrices and their inverse. Other
authors resort to thresholding (Bickel and Levina, 2008b; El Karoui,
2008; Fan et al., forthcoming) or penalized likelihood methods
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(see, e.g., Fan and Peng, 2004 for the underlying general theory)
to estimate sparse large variance matrices. Notable examples of
papers using the latter method are Huang et al. (2006), Rothman
et al. (2008, 2009). Recently, Lamand Fan (2009) proposed aunified
theory of estimation, introducing the concept of sparsistency,
whichmeans that (asymptotically) the zero elements in thematrix
are estimated as zero almost surely.

An alternative approach followed by the literature is to achieve
dimensionality reduction using factor models. The idea is to
replace the k individual serieswith a small number of unobservable
factors such that they are able to capture most of the variation
contained in the original data. Interesting examples are given by
Fan et al. (2008), Wang et al. (2009) and Lam and Yao (2012).
Fan et al. (2011) combine a factor structure with sparsity of the
variance matrix.

A third route is given by shrinkage, which entails substituting
the original ill-conditioned estimator with a convex combination
including it and a target matrix. The original idea is due to Stein
(1956), where it was applied to the estimation of the mean vector.
Applications to variance matrix estimation include Jorion (1986),
Muirhead (1987) and Ledoit and Wolf (2003, 2004a,b, 2012). Intu-
itively, the role of the shrinkage parameter is to balance the esti-
mation error coming from the ill-conditioned variance matrix and
the specification error associated with the target matrix. Ledoit
and Wolf (2003) propose an optimal estimation procedure for the
shrinkage parameter, where the chosen metric is the Frobenius
norm between the variance and the shrinkage matrix. An alterna-
tive approach whereby off-diagonal elements are downweighted
towards zero is given in McMurry and Politis (2010) and Politis
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(2011) in the context of time series. See also an approach to shrink-
age via condition-number regularization in Won et al. (2013).

In this paper, we introduce a new method to estimate nonsin-
gular variance matrices. We propose a different approach for tack-
ling this problem. Starting from the orthogonal decompositions of
symmetric matrices, we exploit the fact that orthogonal matrices
are never ill-conditioned (they have the perfect condition number
of 1), thus identifying the source of the problem as the eigenval-
ues. Our task is then to come upwith an improved estimator of the
eigenvalues. We achieve this by estimating the eigenvectors from
just a fraction of the data (a subsample), then using them to trans-
form the data into approximately orthogonal series that we use to
estimate a well-conditionedmatrix of eigenvalues. Effectively, this
simple idea reduces the multivariate problem to k univariate ones
that are easy to solve. Moreover, we improve precision further by
repeating our procedure over different subsamples, and we show
that averaging the resulting estimators leads to a superior perfor-
mance.

Even though we only use the simple traditional formula for
the sample variance matrix in both steps of our basic ortho-
gonalization-estimationprocedure, the result is awell-conditioned
and precise estimator. Because of the orthogonalization of the data,
the resulting estimate is positive definitewith probability one, even
when the dimension of the matrix is larger than the sample size:
k > n. Our estimator outperforms the traditional one, not only by
achieving a substantial improvement in the condition number, but
also by large improvements in error norms that measure its devi-
ation from the true variance matrix. We also show that our simple
estimator does very well in comparison to other existing methods.

Ourmethod has a number of other attractive features. First, it is
design-free, in the sense that no assumptions aremade on the den-
sities of the randomsample or on anyunderlying parametricmodel
for the structure of the variance matrix. Second, it always delivers
nonsingular well-conditioned estimators, hence remaining precise
when further operations (such as inversions) are required. Suchop-
erations are trivially easy to implement in our setup, since matrix
functions are efficiently written in terms of eigenvalues and eigen-
vectors; e.g., see Abadir and Magnus (2005, Ch. 9).

This paper is organized as follows. Section 2 introduces the
proposed estimator in its simplest baseline then general versions,
and establishes its main properties. Section 3 studies in a Monte-
Carlo experiment the finite-sample properties of our estimator
and how it compares with other methods. It also provides further
guidance on its use in practice. Section 4 concludes. The derivations
are collected in the Appendix.

2. The new estimator

This section contains two parts. First, we briefly present the
setup and the intuition for why the new estimator will perform
well. Second, we investigate the properties for the simplest base-
line formulation of our estimator, and afterwardswe tackle the full
version of it as an extension for which the properties are then eas-
ily obtained. We describe the optimal choice of two subsampling
parameters (one for each step of the baseline orthogonalization-
estimation procedure), first in the case of fixed k, then when k ex-
pands as n increases.

2.1. The setup and the main idea behind the orthogonalization-
estimation procedure

LetΣ := var(x) be a finite k×k positive definite variancematrix
of x. Supposewehave an i.i.d. sample {xi}ni=1, arranged into the n×k
matrix X := (x1, . . . , xn)′ on which we base the usual estimator
(ill-conditioned when k is large relative to n)

Σ ≡ var(x) :=
1
n
X ′MnX,

where Mn := In −
1
n ını

′
n is the de-meaning matrix of dimension n

and ın is a n × 1 vector of ones. The assumption of an i.i.d. setup is
not as restrictive as it may seem: the data can be filtered by an
appropriate model (rather than just de-meaning by Mn) and the
method applied to the residuals; for example, fitting a VAR model
(if adequate) to a vector of time series and applying the method to
the residuals. We will stick to the simplest setup, so as to clarify
the workings of our method.

We can decompose this symmetric matrix asΣ =PΛP ′, (1)

where P is orthogonal and has typical columnpi (i = 1, . . . , k),Λ being the diagonal matrix of eigenvalues of Σ. The condition
number of anymatrix is the ratio of the largest to smallest singular
values of this matrix, a ratio of 1 being the lowest (best numerical)
condition. By orthogonality, all the eigenvalues of P lie on the
unit circle and this matrix is always well-conditioned for any n
and k. This leaves Λ as the source of the ill-conditioning of the
estimate Σ. We will therefore consider an improved estimator
of Λ: a simple estimator of P will be used to transform the data
to achieve approximate orthogonality of the transformed data (in
variance terms), hence yielding a better-conditioned estimator of
the variance matrix.

We can rewrite the decomposition (1) asΛ =P ′ΣP = diag(var(p′

1x), . . . , var(p′

kx)) (2)

the last equality following since Λ is diagonal by definition. Now
suppose that, instead of basingP on the whole sample, we base it
on only m observations (say the first m ones, since the i.i.d. setup
means that there is no gain fromdoing otherwise), use it to approx-
imately orthogonalize the rest of the n−m observations (asp′

ix did
in (2) for all the observations) which are then used to reestimateΛ.
Taking m → ∞ and n − m → ∞ as n → ∞, standard statistical
analysis implies that the resulting estimators are consistent. Notice
that the choice of basing the second step on the remainingn−m ob-
servations comes from two considerations. First, it is inefficient to
discard observations in an i.i.d. setup, so we should not have fewer
than these n − m observations. Second, we should not reuse some
of the firstm observations because they worsen the estimate of Λ:
this will be seen in Proposition 2 (for the condition number) and
implied by the estimators’ expansions in Propositions 3–4 (for the
error norms). As a result, m becomes the only remaining subsam-
pling parameter in question. Proposition 3–4 will show that the
precision of the new estimator is optimized by expressing m as a
function of n asymptotically. Proposition 5 then extend these re-
sults to the case when k varies as n increases, and only then do we
consider the alternative definition of consistency as convergence
in mean square. These propositions are followed by a concluding
discussion of how to calculate the optimalm by resampling in any
finite sample, not just asymptotically.

Intuitively, by orthogonalizing the data, our estimator reduces
the multivariate problem of ill-conditioning and imprecision to a
univariate one for each of the diagonal elements of (2), for which
there is a simple positive definite solution even by traditional
methods of estimation. The result is a well-conditioned estimator
ofΣ, evenwhen k ≥ n and the traditionalΣ is not positive definite.
We will prove this in the next subsection.

Another advantage of our procedure is that we can estimate
the matrix itself as well as any function thereof in one go from
the eigenvalue decomposition. The other methods seen in the
introduction focus on the variance matrix, and if a function is
needed (such as the inverse), one has to make further multivariate
calculations to obtain it. This can be imprecise if the dimension is
large. In addition to the advantages seen so far, we will show that
also the precision of our estimator is an advantage, even thoughwe
only use the simple traditional sample variance estimator in both
steps of our procedure.
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