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a b s t r a c t

We propose new over-identifying restriction (OIR) tests that are robust to heteroskedasticity and serial
correlations of unknown form. The proposed tests do not require consistent estimation of the asymptotic
covariance matrix and hence avoid choosing the bandwidth in nonparametric kernel estimation. Instead,
they rely on the normalizing matrices that can eliminate the nuisance parameters in the limit. Compared
with the conventional OIR test, the proposed tests require only a consistent, but not necessarily optimal,
GMM estimator. Our simulations demonstrate that these tests are properly sized and may have power
comparable with that of the conventional OIR test.
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1. Introduction

The generalized method of moments (GMM) introduced in
Hansen (1982) is a leading estimation technique in econometric
applications. In the context of GMM, the validity of the moment
conditions is tested using the over-identifying restriction (OIR)
test. An OIR test can be made robust to heteroskedasticity and
serial correlations of unknown form by employing a consistent
covariance-matrix estimator. It is typical to compute such a
consistent estimator using the nonparametric kernel method that
requires choosing a kernel function and its bandwidth (truncation
lag); see den Haan and Levin (1997) for a review of this method.
Note that, in comparison with the choice of kernel function, the
choice of bandwidth has much larger impact on the performance
of the kernel covariance-matrix estimator. Thus, the finite-sample
performance of a robust OIR test depends on the chosen bandwidth
of the kernel function.

To circumvent the problems arising from the nonparametric
kernel estimation of the asymptotic covariance matrix, Kiefer
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et al. (2000), hereafter KVB, propose an alternative approach
to constructing parameter significance tests that are robust
to heteroskedasticity and serial correlations; see Bunzel et al.
(2001), Kiefer and Vogelsang (2002a,b), Vogelsang (2003) and Lee
et al. (2014a) for other applications of this approach. The main
idea of the KVB approach is to employ a normalizing matrix
that can eliminate the nuisance parameters of the asymptotic
covariance matrix without having to choose the bandwidth of
a kernel function. Lobato (2001) also obtains a robust test for
serial correlations along the same line.1 Kuan and Lee (2006)
show that, due to the presence of parameter estimation effect,
the aforementioned tests cannot be applied to testing moment
conditions. Kuan and Lee (2006) thus propose, in the spirit of
KVB, tests for general moment conditions that are free from
the estimation effect. Unfortunately, their tests are not readily
applicable to testing OIR, as will be seen in Section 2.3.

In this paper, we extend KVB and Kiefer and Vogelsang (2002b)
to construct new robust and asymptotically pivotal OIR tests. To
achieve this, we propose new normalizing matrices to eliminate

1 In what follows, the tests that are robust to heteroskedasticity and serial
correlations of unknown form will be referred to as robust tests.
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the nuisance parameters in the limit. As in KVB, these new
OIR tests do not require consistent estimation of the asymptotic
covariance matrix and hence avoid choosing the bandwidth in
kernel estimation, in contrast with the conventional OIR test of
Hansen (1982). We derive the limits of the proposed tests under
the null and local alternatives. It is shown that these limits are
invariant with respect to the choice of theweightingmatrix for the
preliminary GMM estimator. Therefore, the proposed robust tests
are computationally convenient, as they require only a consistent,
but not necessarily optimal, GMM estimator. In addition, although
the limiting null distributions are nonstandard, their asymptotic
critical values are readily obtained via simulations; indeed, some
critical values are already available in the literature.2

Our simulations demonstrate that the proposed tests have quite
satisfactory finite-sample performance. The proposed tests are
properly sized in most cases, and their size performance compares
favorably with those of the conventional OIR test and the boot-
strapped OIR test. As for the power performance, the proposed
tests with the certain kernel-based normalizing matrix may have
power comparable with (sometimes power advantage over) the
conventional OIR test. It is also found that the choice of the prelim-
inary GMM estimator has little impact on the empirical sizes and
power functions of the proposed tests, as predicted by our asymp-
totic result.

This paper proceeds as follows. In Section 2, we review the
GMM estimation and OIR test. A class of robust OIR tests and
its asymptotic properties are presented in Section 3. Monte Carlo
simulation results are reported in Section 4. Section 5 concludes
the paper. All proofs are deferred to Appendix.

2. GMM and OIR test

In this section, we present GMM estimation and OIR testing in
the time series context.

2.1. Model

Consider the model characterized by a vector of q moment
conditions:

E[f (ηt; θo)] = 0, for a unique θo ∈ Θ ⊂ Rp, (1)

where ηt is a random vector, θo (p × 1) is the true parameter
vector, and f (q × 1) is a vector of functions that are continuously
differentiable in the neighborhood of θo. Of particular interest to us
is the case that ηt are dependent over time and that f (ηt; θo) are
possibly serially correlated.

The parameter θo in (1) is said to be over-identified (just-
identified) if q > (=) p. Given a sample of T observations, the
GMM estimator of θo is θ̂T = argminθ∈Θ mT (θ)

′HTmT (θ), where

m[rT ](θ) =
1
T

[rT ]
t=1

f (ηt; θ), 0 < r ≤ 1,

with mT (θ) the full-sample average of f (ηt; θ), and HT a symmet-
ric, positive semi-definite weighting matrix.3

We shall study the test performance under a sequence of alter-
natives representing local departures from (1) (also known as the

2 After the first version of our paper, Sun andKim (2012) proposemodified J tests,
based on a series-type long run variance (LRV) estimator. It is shown that when the
number of basis functions in this LRV estimator is fixed, their test has a standard
F distribution. Nonetheless, our tests are not disadvantageous in practice because
their critical values can always be computed; see, e.g., Kiefer and Vogelsang (2002b)
and Phillips et al. (2006) for some critical values.
3 In the paper, a matrix used in a GMM estimation is called a weighting matrix

and a matrix used in an OIR test statistic is called a normalizing matrix.

Pitman drift):

E[f (ηt; θo)] = δo/
√
T , (2)

where δo is a non-zero vector, and (2) reduces to (1) when δo = 0.4
This specification helps the derivation of the limit local to the null
(Davidson and Mackinnon, 1993) and facilitates our subsequent
asymptotic power analysis. Although we do not provide specific
conditions on data, we note that (2) may hold when ηt , t =

1, . . . , T , are a triangular array of strictly stationary random vari-
ables whose joint density function depends on parameters that
change with the sample size T ; see Newey (1985) for details. Here,
the subscript T is suppressed for notation convenience.

In what follows, we let [c] denote the integer part of the
real number c, ⇒ weak convergence (of associated probability
measures),

P
−→ convergence in probability,

D
−→ convergence

in distribution, d
= equality in distribution, Wq a vector of q

independent, standard Wiener processes, and Bq the Brownian
bridge with Bq(r) = Wq(r) − rWq(1) for 0 ≤ r ≤ 1. Given a
matrixAwith the full column rank,wewriteMA = A(A′A)−1A′ and
VA = I − MA. We also write B+ as the Moore–Penrose generalized
inverse of B.

To analyze the properties of θ̂T and the proposed test in the next
section, we impose the following conditions.

[A1] The weighting matrix HT in GMM estimation is such that
HT

P
−→ Ho, where Ho is a q × q non-stochastic matrix that

is symmetric and positive definite.
[A2] Under the local alternative (2), the GMM estimator θ̂T is such

that
√
T (θ̂T − θo) = OP(1).

[A3] Under the local alternative (2),

√
Tm[rT ](θo) =

1
√
T

[rT ]
t=1

f (ηt; θo)

⇒ rδo + SWq(r), 0 < r ≤ 1,

where S is the nonsingular, matrix square root of 6o (i.e.,
6o = SS ′), and 6o = limT→∞ var(T 1/2mT (θo)).

[A4] F[rT ](θ) = [rT ]
−1[rT ]

t=1 ∇θ f

ηt; θ

 P
−→ F(θ) uniformly in

θ and 0 < r ≤ 1, where ∇θ f denotes the q × p matrix of
the first-order derivatives of f with respect to θ, and F(θo) is
a q × p matrix with full column rank. Further, ∇θF[rT ](θo) is
bounded in probability.

[A1] is a standard condition in the GMM literature; the
class of optimal weighting matrices recommended by Hansen
(1982) satisfies this condition. [A2]–[A4] are ‘‘high-level’’ con-
ditions, similar to those in Vogelsang (2003), Kiefer and Vogel-
sang (2005), and Kuan and Lee (2006). [A2] requires consistency
of the GMM estimator, and [A3] regulates {f (ηt; θo)} to obey a
functional central limit theorem (FCLT). Both conditions are as-
sumed to hold under the local alternative (2) and hence per-
mit analysis under local mis-specification; see also Hall (1999,
pp. 101–103). In [A4], {∇θ f (ηt; θ)} is assumed to be governed
by a weak law of large numbers (WLLN); in particular, FT (θo) =

T−1T
t=1 ∇θ f (ηt; θo)

P
−→ F(θo). Note that FCLT and WLLN hold

for serially correlated and heterogeneously distributed data that

4 The local alternative (2) is specified only at θo . One complete specification of
E[f (ηt ; θ)] is:

gT (θ) = g(θ) + h(θ)/
√
T , θ ∈ Θ,

for some functions g and h such that g(θ) = 0 uniquely at θ = θo and h(θo) ≠ 0.
Then, gT (θo) reduces to (2) with h(θo) = δo and gT (θo) → 0 as T → ∞; cf. Stock
and Wright (2000).
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