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a b s t r a c t

In this paper we consider model averaging for quantile regressions (QR) when all models under inves-
tigation are potentially misspecified and the number of parameters is diverging with the sample size.
To allow for the dependence between the error terms and regressors in the QR models, we propose a
jackknife model averaging (JMA) estimator which selects the weights by minimizing a leave-one-out
cross-validation criterion function and demonstrate its asymptotic optimality in terms of minimizing the
out-of-sample final prediction error. We conduct simulations to demonstrate the finite-sample perfor-
mance of our estimator and compare it with other model selection and averaging methods. We apply our
JMA method to forecast quantiles of excess stock returns and wages.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In practice researchers are often confronted with a large num-
ber of candidate models and are not sure which model to use.
Model selection helps to choose a single optimal model, ignores
the information in other models, and often produces a rather un-
stable estimator in applications despite the fact that it has a long
history and nice theoretical properties in both statistics and econo-
metrics literature.1 As an alternative to model selection, model av-
eraging, on the other hand, seeks to obtain a combined estimator
by taking the weighted average of the estimators obtained from
all candidate models under investigation. It allows researchers to
diversify, account for model uncertainty, and improve out-of-
sample performance.
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1 It is well known that a small perturbation of the data can result in selecting a

very differentmodel. As a consequence, estimators of the regression function based
on model selection often have larger variance than usual. See Yang (2001).

Model averaging can be classified as Bayesian model averaging
(BMA) and frequentist model averaging (FMA). See Hoeting et al.
(1999) for an overview on BMA and Moral-Benito (2015) for a
recent overview on both BMA and FMA. FMA has a relatively
shorter history than BMA. Buckland et al. (1997) and Burnham and
Anderson (2002, ch. 6) construct model averaging weights based
on the values of AIC or BIC scores. Yang (2001) and Yuan and
Yang (2005) propose amodel averagingmethod knownas adaptive
regression by mixing (ARM). In a local asymptotic framework
Hjort and Claeskens (2003) and Claeskens and Hjort (2008, ch. 7)
study the asymptotic properties of the FMA maximum likelihood
estimator by studying perturbations around a given narrowmodel
in certain directions. Other works on the asymptotic property of
averaging estimators include Leung and Barron (2006), Pötscher
(2006), Hansen (2009, 2010), and Liu (2015). In particular, Liu
(2015) proposes a plug-in estimator of the optimal weights by
minimizing the sample analog of the asymptotic mean squared
error (MSE) for linear regression models. In a similar spirit, Liang
et al. (2011) derive an exact unbiased estimator of the MSE of the
model average estimator and propose selecting the weights that
minimize the trace of the MSE estimate of focus parameters.

In a seminal article, Hansen (2007) proposes selecting the
model weights in least squares model averaging by minimizing
Mallows’ criterion over a set of discrete weights. The justifica-
tion of this method lies in the fact that the Mallows’ criterion is
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asymptotically equivalent to the squared error so that the Mal-
lows model averaging (MMA) estimator is asymptotically optimal
in terms of minimizing the MSE. Thus his approach marks a sig-
nificant step toward the development of optimal weight choice in
the FMA estimator. Hansen (2008, 2009, 2010) extend his MMA
method to the forecast combination literature, to models with
structural break, and to models with a near unit root, respectively.
Note that Hansen (2007) only considers nested models and his
MMA estimator does not allow for (conditional) heteroskedastic-
ity. Wan et al. (2010) extend Hansen’s MMA estimator to allow for
non-nested model and selection of continuous weights in a unit
simplex. Liu and Okui (2013) extends Hansen’s MMA estimator
to allow for heteroskedasticity and non-discrete weights. To al-
low for both non-nested models and heteroskedasticity, Hansen
and Racine (2012) propose jackknife model averaging (JMA) for
least squares regression when the weights are selected by mini-
mizing a leave-one-out cross-validation criterion function. Zhang
et al. (2013) extend JMA tomodelswith dependent data. In the case
of instrument uncertainty, Kuersteiner and Okui (2010) apply the
MMA approach to the first stage of the 2SLS, LIML and FIML esti-
mators. In contrast, Lee and Zhou (2011) take an average over the
second stage estimators. Sueishi (2010) proposes a new simultane-
ous model and instrument selection method for IV models based
on 2SLS estimation when the true model is of infinite dimension.

Almost all of the above papers on FMA focus on the least squares
regression and MSE criterion. The only exceptions are Hjort and
Claeskens (2003) and Claeskens and Hjort (2008) who concentrate
on the likelihood framework but with the MSE criterion too.
The MSE criterion seems natural in the least squares regression
framework because it balances the asymptotic bias and variance in
a nice way. Nevertheless, it is also interesting to apply the idea of
FMA to different contexts whereMSEmay not be the best criterion
choice.

In this paper we extend the JMA of Hansen and Racine (2012)
to the quantile regression (QR) framework. QR provides much
more information about the conditional distribution of a response
variable than the traditional conditional mean regression. Since
the seminal paper of Koenker and Bassett (1978), QR has attracted
huge attention in the literature. Just as in the least squares
regression, model selection and model averaging can play an
important role in theQRmodel building process. There is a growing
literature on model selection for QR models or more generally,
M-estimation. For example, Hurvich and Tsai (1990) develop a
small sample criterion for the selection of LAD regression models;
Machado (1993) and Burman and Nolan (1995) consider variants
of the Schwarz information criterion (SIC) and Akaike information
criterion (AIC), respectively, for M-estimation which includes the
QR as a special case; Koenker et al. (1994) consider using SIC in QR
models. More recently, Wu and Liu (2009) study variable selection
in penalized QR (see Su and Zhang (2014) for an overview on
this); Belloni and Chernozhukov (2011) consider l1-penalized QR
in high-dimensional sparse models. Nevertheless, to the best of
our knowledge, there still is a lack of an FMA method in the QR
framework. This work seeks to fill this gap. It is well known that
quantile estimates tend to be unstable when the quantile index is
very high or very low (say, close to 0.95 or 0.05). This implies that
model averaging can certainly play an important role in this case.

To proceed, it is worth mentioning that the major motivation
for model averaging is to address the problem ofmodel uncertainty
for forecasting. Kapetanios et al. (2008) provide compelling reasons
for using model averaging for the purpose of forecasting. They
consider two broad cases: one is when the model that generates
the data belongs to the class of candidate models, and the other,
which is perhaps more relevant in empirical applications, is
when the true model does not belong to the class of models
under consideration. In the first case, model averaging addresses

the issue that the chosen model is not necessarily the true
model, and by assigning probabilities to various models can yield
an out-of-sample forecast that is robust to model uncertainty.
In the second case, it is impossible that the chosen model
could capture all the features of the true model, which makes
the motivation for model averaging even stronger because it
has been well documented in the forecasting literature that
forecasts from different models can inform the overall forecast
in different ways and tend to outperform individual forecasts
significantly. Admittedly, forecasting a variable of interest and
discovering the true model (or true structural/causal relation)
can be quite different objectives in econometrics. As Ng (2013)
puts it in her abstract, ‘‘(i)rrespective of the model size, there is
an unavoidable tension between prediction accuracy and consistent
model determination.’’ Consistent model selection of the true
model, if existing, does not necessarily lead to a model that yields
minimum forecast error. The main purpose of this paper is to
provide a FMA method for the purpose of forecasting a variable
of interest under the check loss function but not to discover the
underlying truemodel because it is possible in practice that none of
the models considered is the true model or even close to the truth.

Since we use the check loss function as a base for model
averaging, we do not have the usual bias–variance decomposition
for the MSE-based evaluation criterion, and it is difficult to define
a Mallows-type criterion for the QR model averaging as in Hansen
(2007).2 For this reason, we focus on the extension of Hansen and
Racine’s (2012) JMA to the QR framework. Such an extension is not
trivial for several reasons. First, there is no closed form solution for
QR, and the asymptotic properties of jackknife QR estimators are
not well studied in the literature. Second, since we do not adopt
the local asymptotic framework, it is possible that all the models
under investigation are incorrectly specified even asymptotically.
The literature on QR under misspecification is quite limited. Third,
we allow the number of parameters in the QR models to diverge
with the sample size n, which also complicates the analysis of
QR estimators under model misspecification. We shall study the
consistency and asymptotic normality of QR estimators for a
single potentially misspecified QR model with a diverging number
of parameters, and then study the uniform consistency of the
leave-one-out QR estimators. These results are needed in order to
establish the asymptotic optimality of our JMA estimator. Fourth,
we also allow the number of the candidatemodels to increasewith
the sample size at a suitable polynomial rate.

We conduct Monte Carlo simulations to compare the finite
sample performance of our JMA QR estimators with other model
averaging and model selection methods, such as those based on
AIC and BIC. We find that our JMA QR estimators clearly dominate
other methods for the 0.05th conditional quantile regression. For
the conditional median regression, there is no clearly dominating
method, but JMA QR estimators perform well in most of the cases.
We apply our new method to predict the conditional quantiles of
excess stock returns and wages.

The rest of the paper is structured as follows. Section 2 proposes
the quantile regression model averaging estimator. We study
the asymptotic properties of the quantile regression estimators
and the asymptotic optimality of our jackknife selected weight
vector in Section 3. Section 4 reports the Monte Carlo simulation
results. In Section 5 we apply the proposed method to predict
conditional quantiles of excess stock returns and wages. Section 6
concludes. The proofs of themain results in Section 3 are relegated

2 Alternatively, one can continue to adopt the MSE as an evaluation criterion for
QR estimators. It remains unknown whether Hansen’s MMA has a straightforward
extension to QR.
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