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a b s t r a c t

We study a linear index binary response model with random coefficients B allowed to be correlated with
regressors X . We identify themean of the distribution of B and showhow themean can be interpreted as a
vector of expected relative effects.We use instruments and a control vector V tomake X independent of B
given V . This leads to a localize-then-average approach to both identification and estimation.We develop
a
√
n-consistent and asymptotically normal estimator of a trimmedmean of the distribution of B, explore

its small sample performance through simulations, and present an application.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study a linear index binary response model
with random coefficients allowed to be correlated with regressors.
We call such a model a correlated random coefficients binary re-
sponse model, or a CRCBR model, for short. We show how to iden-
tify the mean of the distribution of random coefficients, and show
that this mean can be interpreted as a vector of expected relative
effects. We also develop a

√
n-consistent and asymptotically nor-

mal estimator of a trimmed mean of this distribution.
One economic motivation for the CRCBR model is similar in

spirit to the motivation for a correlated random coefficients wage
model used by Heckman and Vytlacil (1998) to estimate the mean
rate of return to schooling. These authors argue that schooling is
correlatedwith its randomcoefficient, the rate of return.Moreover,
they state that ‘‘a correlated random coefficients model is central
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to the human capital earnings model’’. By analogy, consider the bi-
nary decision of a married woman to work or not. Level of educa-
tion may be positively correlated with this decision. However, the
weight given to education in making the decision may vary from
person to person due to the influence of unobserved factors like
ability and motivation. Women of higher ability and motivation
may not only seek more education but also give more weight to
education in making their work decisions. The result is that the
weight given to education is not the same positive constant for
each woman, but tends to be higher for women with more edu-
cation. In other words, the weight given to education is positively
correlated with education. A natural way tomodel this type of het-
erogeneity is with a linear index binary response model where the
regression coefficients, or weights, are random variables allowed
to be correlated with the observed regressors.

A similar economic motivation is derived from Wooldridge
(2010, pp. 73–76). He shows that correlated random coefficients
arise in linear indexmodels whenever an observed covariate inter-
acts with a correlated unobserved covariate. He gives an example
of a wagemodel where education, an observed covariate, interacts
with ability, an unobserved covariate likely to be correlated with
education. By analogy, consider modeling a binary work decision
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where the decision to work depends on education and ability and
there is an interaction between education and ability. This situa-
tion can be modeled with a linear index binary response model al-
lowing regressors to be correlated with random coefficients.

We give an application to health economics in Section 5. We
model the occurrence of abnormal birth conditions in newborns
whose mothers smoked during pregnancy. The average number of
cigarettes the mother smoked each day during pregnancy is one of
the regressors in themodel. We argue that the coefficient of smok-
ing is likely to be positively correlatedwith smoking, since the level
of smokingmay be positively correlated with the level of other un-
observed risky behaviors (e.g., use of drugs, neglect of proper diet)
that may make the occurrence of birth abnormalities more likely.

We now turn to a formal development of the CRCBR model.
Let the latent variable Y ∗

= XB∗, where X = (X1, X2, . . . , Xk)
is a 1 × k vector of random explanatory variables and B∗

=

(B∗

1, B
∗

2, . . . , B
∗

k)
′ is a k×1 vector of random coefficients allowed to

be correlated with X . Take X2 ≡ 1, the intercept term. Then XB∗
=

X1B∗

1 + B∗

2 +X3B∗

3 +· · ·+XkB∗

k . Define Y = {Y ∗ > 0} = {XB∗ > 0},
where {A} denotes the indicator function of the event A. Note that
Y = {XB > 0} where B = λB∗ for any λ > 0. That is, Y is invariant
to positive scale normalizations of B∗, and so the distribution of B∗

can only be identified up to scale.1 We assume that B∗

1 > 0 and
take λ = 1/B∗

1 , so that the vector of random coefficients of interest
is B = B∗/B∗

1 = (1, B2, . . . , Bk). For simplicity, from now on, we
take Y ∗

= XB = X1 + B2 + X3B3 + · · · + XkBk.
For ease of exposition,we assume themean of B exists andwrite

β = (1, β2, β3, . . . , βk)
′
= EB.2 Define the CRCBR model

Y = {XB > 0} (1)
= {ϵ < Xβ} (2)

where ϵ = −X(B−β) = (β2−B2)+(β3−B3)X3+· · ·+(βk−Bk)Xk.
Note that the CRCBR model reduces to the traditional nonran-

dom coefficients binary response model when B2, the coefficient
of the intercept term, is the only random coefficient in the model.
In this case, ϵ = β2 − B2. When B2 is allowed to be correlated
with components of X , we have an endogenous binary response
model like those of Rivers andVuong (1988) and Blundell and Pow-
ell (2004). When B2 is uncorrelated with X , we have an exoge-
nous binary response model like those of Manski (1975, 1985) and
Horowitz (1992).

Refer to (2) and note that if any component of X is correlated
with any component of B, then EX ′ϵ ≠ 0. Thus, correlation
between regressors and random coefficients implies endogeneity.
We say that a component of X is endogenous if it is correlated with
at least one component ofB. To handle this endogeneity,we require
instruments and control variables.

LetX1 denote an endogenous component of X . We assume that
there exists a vector of instruments, Z , for X1. This means that at
least one component of Z not in X is correlated with X1, and Z is
unrelated to B in a sense to be defined shortly. In addition, we as-
sume that X1 = φ1(Z, V1) where V1 is a random variable inde-
pendent of Z , and φ1 is a real-valued function invertible in V1 for
each possible value of Z . If Z is independent of B given V1, then X1
is independent of B given V1, and so V1 is a control variable for X1
with respect to B, as defined in Imbens and Newey (2009). Under
these restrictions, X1 can be either a separable or nonseparable
function of Z and V1. For example, we allow the standard separa-
ble case X1 = φ1(Z, V1) = M(Z) + V1 where M(Z) = E(X1 | Z)
and V1 = X1 − M(Z), as in Blundell and Powell (2004).

1 For related discussion, see Gautier and Kitamura (2009) and Ichimura and
Thompson (1998).
2 As we show in Section 2, our methods do not require that the mean of B exists,

and even if themean exists, β need not be themean, but can denote any reasonable
measure of center of the distribution of B.

Let edenote the number of endogenous components ofX and let
X = (X1, . . . , Xe) denote the vector of endogenous components
of X . For simplicity, assume that Z is a vector of instruments for
each component of X. Let V = (V1, . . . , Ve) denote the vector of
control variables for X. That is, as above, for each j, Xj = φj(Z, Vj)
where Vj is independent of Z and φj is invertible in Vj conditional
on Z . If Z is independent of B given V , then X is independent
of B given V . If, in addition, the exogenous components of X are
independent of (B, V ), then X is independent of B given V . In this
setting, conditioning on V , the source of endogeneity, produces
conditional independence. This suggests a localize-then-average
approach to both identification and estimation.

If X is independent of B given V , and (B, V ) satisfies a type
of joint symmetry condition, then conditional median restrictions
hold, which generalize the median independence restriction of
Manski (1975, 1985). These conditional median restrictions are
sufficient to identifyE(B | V ) in a distribution-freeway that allows
arbitrary forms of heteroscedasticity in a conditional error term.
Averaging over V then identifies β = EB.

We note that as in the exogenous set-up analyzed by Manski
(1975, 1985) and Horowitz (1992), our weak conditional median
restrictions, by themselves, preclude identifying features like the
average structural function of Blundell and Powell (2004) as well
as the associated average marginal effects. See also the discussion
in Hoderlein (2010). Identifying such features may be possible un-
der stronger assumptions, but we choose to follow the maximum
score approach in this paper, and leave such extensions for future
work. However, we do show in the next section that β = EB can
be interpreted as a vector of expected relative effects, which can
provide useful interpretations in practice, as we illustrate in an ap-
plication section.

We estimate E(B | V ) with a localized version of the smoothed
maximum score estimator of Horowitz (1992), and then average
the trimmed estimated conditional expectations to obtain an esti-
mator of a trimmedmean of the distribution of B.3 The conditional
expectation estimators suffer from a curse of dimensionality, but
the estimator of the trimmed mean does not. The averaging over-
comes the curse and yields a

√
n-consistent and asymptotically

normal estimator of the trimmed mean. An interesting aspect of
the estimation procedure is the localization step. We do not local-
ize directly onV , whichwould require estimatingV , a difficult task,
in general. Rather, we localize on an invertible transformation of
V , which is easily estimated with kernel regression methods. This
simplified localization step is made possible by a simple general-
ization of a result in Matzkin (2003).

Conditional median restrictions are used to identify the local-
izing function E(B | V ). Specifically, we require a conditional me-
dian independence (CMI) condition and a conditional median zero
(CMZ) condition. The CMI condition holds whenever X is indepen-
dent of B given V , a plausible sufficient condition. The CMZ condi-
tion is implied by symmetry conditions on thedistribution of (B, V )
which guarantee that certain conditional means and conditional
medians coincide. These symmetry conditions are nontrivial, but
they are satisfied for a wide range of possible (B, V ) distributions,
as we show. As stated earlier, we focus onE(B | V ) as the localizing
function for ease of exposition, so that averaging over V gives the
familiar objectEB as the parameter of interest. However, other rea-
sonablemeasures of center of the distribution of B can be identified
using other localizing functions which satisfy CMI and CMZ. In the
next section we describe examples where E(B | V ) (and therefore

3 As discussed in Section 3 and in online Appendix B, we use trimming as a purely
technical device to assist in asymptotic arguments. There need be no practical
difference between the trimmed mean and the mean β . The trimmed mean can
be made arbitrarily close to β by choosing a large enough trimming constant.
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