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a b s t r a c t

In this paper, we consider a semiparametric single-index panel data model with cross-sectional depen-
dence and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture
unobservable heterogeneity. Under a general spatial error dependence structure, we then establish some
consistent closed-form estimates for both the unknown parameters and the link function for the case
where both cross-sectional dimension (N) and temporal dimension (T ) go to infinity. Rates of conver-
gence and asymptotic normality are established for the proposed estimates. Our experience suggests that
the proposed estimationmethod is simple and thus attractive for finite-sample studies and empirical im-
plementations. Moreover, both the finite-sample performance and the empirical applications show that
the proposed estimation method works well when the cross-sectional dependence exists in the data set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Single-index models have been studied by both econometri-
cians and statisticians in the past twenty years or so and cover
many classic parametric models (e.g. linear model and logistic
model) by using a general function form g


x′β

(e.g. Chapter 2

of Gao (2007)). Recently, researchers start considering single-index
models under panel data set-up (c.f. Chen et al., 2013a,b). For most
of the publishedwork on semiparametric single-indexmodels, the
estimation is based on a nonparametric kernel method, whichmay
be sensitive to initial values due to multi-modality or flatness of a
curve in practice. Chen et al. (2013b) use this technique to investi-
gate a partially linear panel datamodelwith fixed effects and cross-
sectional independence. In their paper, a consistent parameter
estimator is achieved with the rate of convergence

√
NT (N and T

here and hereafter are cross-sectional dimension and temporal di-
mension, respectively), but, due to the identification requirements,
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they have to impose extra restrictions on the fixed effects. Alter-
natively, one can use sieve estimation techniques to implement a
two-step procedure (e.g. profile method or iterative method).

To the best of our knowledge, consistent closed-form estimates
have not been established for this type of semiparametric single-
index model in the literature. In this paper, we aim at establishing
consistent closed-form estimates for a semiparametric single-
index panel data model with both cross-sectional dependence
and stationarity for the case where both N and T go to infinity.
The estimation procedure proposed below allows us to avoid
certain computational issues and is therefore easy to implement.
The estimation techniques proposed in this paper can also be
extended to the multi-factor structure model. For example, under
certain restrictions similar to those in Su and Jin (2012), a
semiparametric single-index extension of Pesaran (2006) can be
achieved. Furthermore, we add fixed effects to the model and do
not impose any particular assumptions on them, and therefore
they can be correlatedwith the regressors to capture unobservable
heterogeneity. Compared to Chen et al. (2013b), our set-up is more
flexible on the fixed effects.

In this paper, we assume that all the regressors and error terms
can be cross-sectionally correlated. As covered in Assumption 1 of
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Section 3, we impose a general spatial correlation structure to link
the cross-sectional dependence and stationary mixing condition
together. As a result, some types of spatial error correlation can
easily be covered by the assumptions given in Section 3 (c.f. Chen
et al., 2012a,b). This set-up is more flexible than that considered
by Chen et al. (2013b). As Andrews (2005) and Bai (2009) discuss,
common shocks (e.g. global finance crisis) exist in many economic
phenomena and cause serious forecasting biases, and an important
characteristic is that they induce a correlation among individuals.
Thus, it is vital for us to have suchmodels that can capture this type
of ‘‘global’’ cross-sectional dependence.

We specifically use Hermite polynomial series orthogonal ex-
pansion to estimate the unknown link function. This technique
has been widely used in the econometrical literature, for exam-
ple, by Gallant and Nychka (1987) and Gallant and Tauchen (1989),
among others. In general, this method is referred to as sieve esti-
mation. Very detailed literature reviews on the Hermite polynomi-
als and the sieve estimation can be seen in Nevai (1986) and Chen
(2007) respectively. However, a further technique gadget on the
Hermite polynomials brings a benefit to the expansion of the link
function (see Lemma B.1 in Appendix). As a result, a semiparamet-
ric model is rephrased completely as a parametric model such that
we are able to derive a closed-form estimate for the index vector,
and because of this the requirement for the parameter space is low-
ered to the minimum level, comparing with the profile method
where usually θ0 is stipulated to be an inner point of a compact
convex set Θ .

In summary, this paper makes the following contributions:

1. it proposes a semiparametric single-index panel data model to
simultaneously accommodate cross-sectional dependence, sta-
tionarity and unobservable heterogeneity;

2. it establishes simple and consistent closed-form estimates for
the unknown index vector, and consequently there is no restric-
tion on the parameter space;

3. it establishes both rates of convergence and asymptotic normal-
ity results for the estimates under a general spatial error depen-
dence structure; and

4. it evaluates the proposed estimationmethod through the use of
both simulated and real data examples.

The structure of this paper is as follows. Section 2 proposes
our model and discusses the main idea. Section 3 constructs a
closed-form estimate for a vector of unknown parameters of inter-
est and introduces assumptions for the establishment of asymp-
totic consistency and normality results. In Section 4, we recover
the unknown link function and evaluate the rate of convergence. In
Section 5, we do Monte Carlo experiments which particularly ver-
ify whether the fixed effect dependence affects the proposed es-
timation and provide an empirical case study by looking into the
demand of the United States (US) for cigarettes. Section 6 con-
cludes this paper with some comments. The key proofs are given
in Appendix B. Some other proofs, verifications and relevant dis-
cussions are given in a supplementary document of this paper (see
Appendix C).

Throughout the paper, we will use the following notation: ⊗

denotes the Kronecker product; Ik denotes the identitymatrixwith
dimension k; ik signifies the k × 1 vector (1, . . . , 1)′; MP = Ik −

P(P ′P)−1P ′ denotes the projectionmatrix generated bymatrix P =

Pk×l with full column rank; A− denotes theMoore–Penrose inverse
of the matrix A; →P and →D stand for convergence in probability
and convergence in distribution, respectively; ∥ · ∥ denotes the
Euclidean norm; ⌊a⌋ means the largest integer not exceeding a.

2. Semiparametric single-index panel data models

A semiparametric single-index panel data model is specified as
follows:

yit = g

x′

itθ0

+ γi + eit , i = 1, . . . ,N, t = 1, . . . , T , (2.1)

where yit is a scalar process, xit is a (d × 1) explanatory
variable, eit is an error process and the link function g(w) ∈

L2(R, exp(−w2/2)) is unknown. Here, L2(R, exp(−w2/2)) =

{g(w) :


R g2(w) exp(−w2/2)dw < ∞} is a Hilbert space. We
use {γi} to capture fixed effects in this model, which is allowed to
be correlated with the regressors. Under the current set-up, our
main interest is to consistently estimate the index vector θ0 =

(θ01, . . . , θ0d)
′ and the link function g(·) for the case where both

N and T go to infinity.
To meet the identification requirements (c.f. Ichimura (1993)

and Horowitz (2009)), we assume that ∥θ0∥ = 1 and θ01 > 0. For
the link function g(·), we expand it by the Hermite polynomials
into an orthogonal series and approximate it by a truncated series.

The Hermite polynomial system {Hm (w) , m = 0, 1, 2, . . .} is
a complete orthogonal system in the Hilbert space L2


R, exp

(−w2/2)

and each element is defined by

Hm (w) = (−1)m · exp

w2/2


·

dm

dwm
exp


−w2/2


. (2.2)

The orthogonality of the system reads


R Hm (w)Hn (w) exp
−w2/2


dw = m!

√
2πδmn, where δmn is the Kronecker delta.

Define further that hm(w) =
1

√
m!
Hm(w), so that for any g(w) ∈

L2

R, exp


−w2/2


we can expand it in terms of hm(w) as

follows:

g(w) =

∞
m=0

cmhm(w),

cm =
1

√
2π


R
g(w)hm(w) exp


−w2/2


dw. (2.3)

Based on the above expansion, one is already able to use a pro-
file method or an iterative estimation method to estimate θ0 and
the link function (e.g. Dong et al. (2014)). Since neither of these
two methods results in a closed-form estimator, numerical esti-
mates are often sensitive to the initial values in practice due to
multi-modality or flatness of a curve. Instead, we further expand
hm(x′

itθ0) by Lemma B.1 of the Appendix as follows.

g

x′

itθ0


=

k−1
m=0

cmhm

x′

itθ0

+

∞
m=k

cmhm

x′

itθ0


(2.4)

=

k−1
m=0


|p|=m

amp (θ0) Hp (xit) + δk

x′

itθ0

, (2.5)

where positive integer k is truncation parameter and

δk

x′

itθ0


=

∞
m=k

cmhm(x′

itθ0), amp(θ0) =


m
p


cmθ

p
0 ,

m
p


=

m!

d
j=1

pj!
,

θ
p
0 =

d
j=1

θ
pj
0j , Hp (xit) =

d
j=1

hpj


xit,j

,

xit =

xit,1, . . . , xit,d

′
, p = (p1, . . . , pd)′ ,

|p| = p1 + · · · + pd
and pj’s for j = 1, . . . , d are non-negative integers.

The expansion (2.5) allows us to separate the covariate xit and
the coefficient θ0, so the closed-form estimator can be established
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