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a b s t r a c t

In nonparametric instrumental variables estimation, the mapping that identifies the function of interest,
g , is discontinuous and must be regularized to permit consistent estimation. The optimal regularization
parameter depends on population characteristics that are unknown in applications. This paper presents
a theoretically justified empirical method for choosing the regularization parameter in series estimation.
The method adapts to the unknown smoothness of g and other unknown functions. The resulting
estimator of g converges at least as fast as the optimal rate multiplied by (log n)1/2. The asymptotic
integrated mean-square error (AIMSE) of the estimator is within a specified factor of the optimal AIMSE.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper is about estimating the unknown function g in the
model

Y = g(X)+ U; E(U|W = w) = 0 (1.1)

for almost everyw or, equivalently,

E[Y − g(X)|W = w] = 0 (1.2)

for almost everyw. In thismodel, g is a function that satisfies regu-
larity conditions but is otherwise unknown, Y is a scalar dependent
variable, X is a continuously distributed explanatory variable that
may be correlated with U (that is, X may be endogenous), W is a
continuously distributed instrument for X , and U is an unobserved
random variable. The data are an independent random sample of
(Y , X,W ). The paper presents a theoretically justified, empirical
method for choosing the regularization parameter that is needed
for estimation of g .

Existing nonparametric estimators of g in (1.1)–(1.2) can be di-
vided into two main classes: sieve (or series) estimators and ker-
nel estimators. Sieve estimators have been developed by Ai and
Chen (2003), Newey and Powell (2003), Blundell et al. (2007), and
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Horowitz (2012). Kernel estimators have been developed by Hall
and Horowitz (2005) and Darolles et al. (2011). Florens and Si-
moni (2010) describe a quasi-Bayesian estimator based on ker-
nels. Hall and Horowitz (2005) and Chen and Reiss (2011) found
the optimal rate of convergence of an estimator of g . Horowitz
(2007) gave conditions for asymptotic normality of the estimator
of Hall andHorowitz (2005). Horowitz and Lee (2012) showed how
to use the sieve estimator of Horowitz (2012) to construct uni-
form confidence bands for g . Newey et al. (1999) present a con-
trol function approach to estimating g in a model that is different
from (1.1)–(1.2) but allows endogeneity of X and achieves iden-
tification through an instrument. The control function model is
non-nested with (1.1)–(1.2) and is not discussed further in this
paper. Chernozhukov et al. (2007), Horowitz and Lee (2007), and
Gagliardini and Scaillet (2012) have developed methods for esti-
mating a quantile-regression version of model (1.1)–(1.2). Chen
and Pouzo (2009, 2012) developed a method for estimating a large
class of nonparametric and semiparametric conditional moment
models with possibly non-smooth moments. This class includes
the quantile-regression version of (1.1)–(1.2).

As is explained further in Section 2 of this paper, the relation
that identifies g in (1.1)–(1.2) creates an ill-posed inverse problem.
That is, the mapping from the population distribution of (Y , X,W )
to g is discontinuous. Consequently, g cannot be estimated con-
sistently by replacing unknown population quantities in the iden-
tifying relation with consistent estimators. To achieve a consistent
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estimator it is necessary to regularize (ormodify) themapping that
identifies g . The amount of modification is controlled by a param-
eter called the regularization parameter. The optimal value of the
regularization parameter depends on unknown population char-
acteristics and, therefore, cannot be calculated in applications. Al-
though there have been proposals of informal rules-of-thumb for
choosing the regularization parameter in applications, theoreti-
cally justified empirical methods are not yet available.

This paper presents an empirical method for choosing the
regularization parameter in sieve or series estimation, where the
regularization parameter is the number of terms in the series
approximation to g . The method consists of optimizing a sample
analog of a weighted version of the integrated mean-square error
of a series estimator of g . The method does not require a priori
knowledge of the smoothness of g or of other unknown functions.
It adapts to their unknown smoothness. The estimator of g based
on the empirically selected regularization parameter also adapts
to unknown smoothness. It converges in probability at a rate that
is at least as fast as the asymptotically optimal rate multiplied by
(log n)1/2, where n is the sample size. Moreover, its asymptotic
integrated mean-square error (AIMSE) is within a specified factor
of the optimal AIMSE. The paper does not address the question
of whether the factor of (log n)1/2 can be removed or is an
unavoidable price that must be paid for adaptation. This question
is left for future research.

Section 2 provides background on the estimation problem and
the series estimator that is used with the adaptive estimation
procedure. This section also reviews the relevant mathematics and
statistics literature. The problems treated in that literature are
simpler than (1.1)–(1.2). Section 3 describes the proposed method
for selecting the regularization parameter. Section 4 presents the
results of Monte Carlo experiments that explore the finite-sample
performance of the method. Section 5 presents an empirical
example, and Section 6 presents concluding comments. All proofs
are in the Appendix.

2. Background

This section explains the estimation problem and the need for
regularization, outlines the sieve estimator that is used with the
adaptive estimation procedure, and reviews the statistics literature
on selecting the regularization parameter.

2.1. The estimation problem and the need for regularization

Let X and W be continuously distributed random variables.
Assume that the supports of X and W are [0, 1]. This assumption
does not entail a loss of generality, because it can be satisfied by, if
necessary, carrying out monotone increasing transformations of X
andW . Let fXW and fW , respectively, denote the probability density
functions of (X,W ) and W . Define

m(w) = E(Y |W = w)fW (w).

Let L2[0, 1] be the space of real-valued, square-integrable functions
on [0, 1]. Define the operator A from L2[0, 1] → L2[0, 1] by

(Ah)(w) =


[0,1]

h(x)fXW (x, w)dx,

where h is any function in L2[0, 1]. Then g in (1.1)–(1.2) satisfies
Ag = m.

Assume that A is one-to-one, which is necessary for identifica-
tion of g . Then g = A−1m. If f 2XW is integrable on [0, 1]2, then zero
is a limit point (and the only limit point) of the singular values of A.
Consequently, the singular values of A−1 are unbounded, and A−1

is a discontinuous operator. This is the ill-posed inverse problem.
Because of this problem, g could not be estimated consistently by

replacing m in g = A−1m with a consistent estimator, even if A
were known. To estimate g consistently, it is necessary to regular-
ize (ormodify) A so as to remove the discontinuity of A−1. A variety
of regularization methods have been developed. See, for example,
Engl et al. (1996), Kress (1999), and Carrasco et al. (2007), among
many others. The regularizationmethod used in this paper is series
truncation, which is a modification of the Petrov–Galerkin method
that is well-known in the theory of integral equations. See, for ex-
ample, Kress (1999, pp. 240–245). It amounts to approximating A
with finite-dimensional matrix. The singular values of this matrix
are bounded away from zero, so the inverse of the approximating
matrix is a continuous operator. The details of the method are de-
scribed further in Section 2.2.

2.2. Sieve estimation and regularization by series truncation

The adaptive estimation procedure uses a two-stage estimator
that is a modified version of Horowitz’s (2012) sieve estimator of
g . The estimator is defined in terms of series expansions of g , m,
and A. Let {ψj : j = 1, 2, . . .} be a complete, orthonormal basis for
L2[0, 1]. The expansions are

g(x) =

∞
j=1

bjψj(x),

m(w) =

∞
k=1

mkψk(w),

and

fXW (x, w) =

∞
j=1

∞
k=1

cjkψj(x)ψk(w),

where

bj =


[0,1]

g(x)ψj(x)dx,

mk =


[0,1]

m(w)ψk(w)dw,

and

cjk =


[0,1]2

fXW (x, w)ψj(x)ψk(w)dxdw.

To estimate g , we need estimators of mk, cjk, m, and fXW . Denote
the data by {Yi, Xi,Wi : i = 1, . . . , n}, where n is the sample size.
The estimators ofmk and cjk, respectively, are m̂k = n−1n

i=1 Yiψk

(Wi) and ĉjk = n−1n
i=1 ψj(Xi)ψk(Wi). The estimators of m and

fXW , respectively, are m̂(w) =
Jn

k=1 m̂kψk(w) and f̂XW (x, w) =Jn
j=1
Jn

k=1 ĉjkψj(x)ψk(w), where Jn is a pilot series truncation
point that, for now, is assumed to be non-stochastic. It is assumed
that as n → ∞, Jn → ∞ at a rate that is specified in Section 3.1.
Section 3.3 describes an empirical method for choosing Jn. Define
the operator Â that estimates A by

(Âh)(w) =


[0,1]

h(x)f̂XW (x, w)dx.

The first-stage estimator of g is defined as1

g̃ = Â−1m̂. (2.2)

1 Â and Â−1 are defined on the subspace spanned by {ψj : j = 1, . . . , Jn}.
Under the assumptions of this paper, Â can be represented by a square, non-singular
matrix, and (2.2) is equivalent to ĝ = (Â∗Â)−1Â∗m̂. Eq. (2.2) and this equivalence do
not hold if Â is non-square, as can happen if X andW have different dimensions. The
row and column dimensions of a non-square Â can be chosen separately, thereby
requiring the choice of two regularization parameters. The treatment of this case is
beyond the scope of this paper.
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