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a b s t r a c t

We propose a nonparametric estimation and inference for conditional density based Granger causality
measures that quantify linear and nonlinear Granger causalities. We first show how to write the causal-
ity measures in terms of copula densities. Thereafter, we suggest consistent estimators for these measures
based on a consistent nonparametric estimator of copula densities. Furthermore, we establish the asymp-
totic normality of these nonparametric estimators and discuss the validity of a local smoothed bootstrap
that we use in finite sample settings to compute a bootstrap bias-corrected estimator and to perform sta-
tistical tests. A Monte Carlo simulation study reveals that the bootstrap bias-corrected estimator behaves
well and the corresponding test has quite good finite sample size and power properties for a variety of
typical data generating processes and different sample sizes. Finally, two empirical applications are con-
sidered to illustrate the practical relevance of nonparametric causality measures.

© 2014 Elsevier B.V. All rights reserved.

✩ The authors thank two anonymous referees, an Associate Editor, and the Editor
Peter Robinson for several useful comments. We would also like to thank the
seminar participants at Humboldt University of Berlin and Institut de statistique,
Biostatistique et science actuarielles (ISBA) at Université catholique de Louvain
for their excellent comments. Taamouti acknowledges financial support from the
SpanishMinistry of Education through grants SEJ 2007-63098 and ECO2012-19357.
The research work of Bouezmarni is supported by NSERC of Canada. El Ghouch
acknowledges financial support from IAP research network P6/03 of the Belgian
Government (Belgian Science Policy), and from the contract ‘Projet d’Actions de
Recherche Concertées’ (ARC) 11/16-039 of the ‘Communauté française de Belgique’,
granted by the ‘Académie universitaire Louvain’.
∗ Corresponding author. Tel.: +34 91 6249863; fax: +34 91 6249875.

E-mail addresses: ataamout@eco.uc3m.es (A. Taamouti),
Taoufik.Bouezmarni@usherbrooke.ca (T. Bouezmarni),
Anouar.Elghouch@uclouvain.be (A. El Ghouch).

1. Introduction

Much research has been devoted to building and applying tests
of non-causality. However, once we have concluded that a ‘‘causal
relation’’ (in the sense of Granger) is present, it is usually impor-
tant to assess the strength of this relationship. Only few papers
have been proposed to measure the causality between random
variables. Furthermore, although the concept of causality is nat-
urally defined in terms of conditional distributions, the estimation
of the existing causality measures has been done using paramet-
ric mean regression models in which the causal relations are lin-
ear. Consequently, one simply cannot use the existing measures
to quantify the strength of nonlinear causalities. The present pa-
per aims to propose a nonparametric estimation and inference for
Granger causality measures. The proposed approach is model-free
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and allows us to quantify nonlinear causalities and the causalities
that show up in conditional quantiles as well as higher order con-
ditional moments (such as volatilities, skewness, kurtosis, etc.).

The concept of causality introduced by Wiener (1956) and
Granger (1969) constitutes a basic notion for studying dynamic re-
lationships between time series. This concept is defined in terms of
predictability at horizon one of a (vector) variable Y from its own
past, the past of another (vector) variable X, and possibly a vector
Z of auxiliary variables. The theory of Wiener–Granger causality
has generated a considerable literature; for review see Dufour and
Taamouti (2010). Wiener–Granger analysis distinguishes between
three basic types of causality: from Y to X , from X to Y , and instan-
taneous causality. In practice, it is possible that all three causality
relations coexist, hence the importance of finding means to quan-
tify their degree. Unfortunately, causality tests fail to accomplish
this task, because they only provide evidence on the presence or
the absence of causality, and statistical significance depends on
the available data and test power. A large effect may not be sta-
tistically significant (at a given level), and a statistically significant
effect may not be ‘‘large’’ from an economic viewpoint (or more
generally from the viewpoint of the subject at hand) or relevant
for decision making. Hence, it is crucial to distinguish between the
numerical value of a parameter and its statistical significance (see
McCloskey and Ziliak (1996)).

Thus, beyond accepting or rejecting non-causality hypotheses
– which state that certain variables do not help forecasting other
variables – we wish to assess the magnitude of the forecast im-
provement, where the latter is defined in terms of some loss func-
tion (Kullback distance). Even if the hypothesis of no improvement
(non-causality) cannot be rejected from looking at the available
data (for example, because the sample size or the structure of the
process does allow for high test power), sizeable improvements
may remain consistentwith the same data. Or, by contrast, a statis-
tically significant improvement –whichmay easily be produced by
a large data set – may not be relevant from a practical viewpoint.

The topic of measuring the causality has attracted much less
attention. Geweke (1982, 1984b) introduced measures of causal-
ity based on mean-square forecast errors. Gouriéroux et al. (1987)
proposed causality measures based on the Kullback information
criterion and provided a parametric estimation for their measures.
Polasek (1994, 2002) showed how causality measures can be com-
puted using the Akaike Information Criterion (AIC) and a Bayesian
approach. Dufour and Taamouti (2010) proposed short and long
run causality measures based on vector autoregressive and mov-
ing averagemodels. The estimation ofmost existing causalitymea-
sures has been done based on parametric mean regressionmodels.
However, the misspecification of parametric model may affect the
structure of the causality between the variables of interest. In
addition, the dependence in the mean-regression is only due to
the mean dependence, and thus it ignores the dependence that
show up in conditional quantiles as well as higher order condi-
tional moments. Finally, as shown inmany theoretical and empiri-
cal papers, several ‘‘causal relations’’ are nonlinear; see for example
Gabaix et al. (2003), Bouezmarni et al. (2012) and Bouezmarni and
Taamouti (2011), and references therein. Hence, the existing esti-
mation methods for causality measures cannot be used to quan-
tify nonlinear causalities. An exception is the paper of Zheng et al.
(2012) who study linear and nonlinear strength of dependence
without making any parametric assumptions on the data. How-
ever, their approach only focuses on the dependence in the mean,
whereas our approach deals with any type of dependence.

We propose a nonparametric estimator for Granger causality
measures that quantify nonlinear causalities and causalities that
show up in higher order conditional moments. The nonparametric
estimator ismodel-free and therefore it does not require the speci-
fication of the model linking the variables of interest. Wewrite the

theoretical Granger causality measures in terms of copula densi-
ties. Copula is a tool that fully quantifies the dependence among
the variables of interest, and thus it can be used to characterize
the conditional probability density based Granger causality that
we consider in this paper. So, it seems natural to define the mea-
sures of Granger causality in distribution using copulas. An advan-
tage of such an approach is that it allows us to completely separate
themarginal structure from the dependence structure. As noted by
Chen and Fan (2006), separate modeling of the temporal depen-
dence and the marginal behavior is particularly important when
the dependence structure and the marginal properties of a time
series are affected by different exogenous variables.

Thereafter, the causality measures are estimated by replacing
the unknown copula densities by their nonparametric estimates.
The copula densities are estimated nonparametrically using Bern-
stein polynomials. For i.i.d. data, Sancetta and Satchell (2004) show
that, under some regularity conditions, any copula can be repre-
sented by a Bernstein copula. Bouezmarni et al. (2010) provide the
asymptotic properties of the Bernstein copula density estimator for
dependent data. The nonparametric Bernstein copula density esti-
mates are guaranteed to be non-negative. Since the causality mea-
sures are defined using the Kullback distance, the non-negativity
of the Bernstein estimators avoids having negative values inside
the logarithmic function. Furthermore, there is no boundary bias
problemwhenweuse the Bernstein estimator, because by smooth-
ing with beta densities the Bernstein copula density does not as-
sign weights outside its support. Chen and Huang (2007) propose
a bivariate kernel copula estimator based on local linear kernels
that also removes the boundary bias. For the review of how to re-
move boundary bias in nonparametric estimation, see for example
Brown and Chen (1999) and Chen (2000).

We establish the asymptotic normality of the proposed non-
parametric estimator. This result is used to build tests for the statis-
tical significance of causality measures. The asymptotic normality
is achieved by subtracting some bias terms and then rescale the es-
timator by the proper variance.We also discuss the validity of local
smoothed bootstrap that we use in finite sample settings to com-
pute a bootstrap bias-corrected estimator and to perform statisti-
cal test for Granger causality measures. A Monte Carlo simulation
study reveals that the bootstrap bias-corrected estimator behaves
well and that the test has good power for a variety of typical data
generating processes and different sample sizes.

Finally, the empirical importance of measuring nonlinear
causalities is illustrated. In a first empirical applicationwe quantify
the causality between S&P500 Index returns and many exchange
rates (US/Canada, US/UK and US/Japan exchange rates). We find
that both exchange rates and stock prices could have a significant
impact on each other. We also find that the impact of stock returns
on exchange rates is much stronger than the impact of exchange
rates on stock returns. In a second applicationwe compare the pre-
dictive content of dividend–price ratio, volatility index (VIX) and
liquidity factor for stockmarket returns. The results show that both
dividend–price ratio and VIX help to predict stock market returns.
The comparison of causality measure estimates indicates that VIX
has more predictive content than dividend–price ratio. We also
find that liquidity factor of Pastor and Stambaugh (2003) does not
help to predict the time-series of stock returns.

The plan of the paper is as follows. Section 2 provides the mo-
tivation for considering a nonparametric causality measures. Sec-
tions 3 and 4 present the theoretical framework which underlies
the definitions of causality measures using probability and copula
density functions. In Section 5 we introduce a consistent nonpara-
metric estimator of causalitymeasures based on Bernstein polyno-
mial.Wealso establish the asymptotic distribution of our estimator
and discuss the asymptotic validity of a local bootstrap finite sam-
ple test. In Section 6 we extend our results to the case where the
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