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a b s t r a c t

Separability is an important feature of structural equations, as it implies the absence of unobservable
heterogeneity of effects and has significant implications for identification and efficiency of estimation.
This paper provides a nonparametric test for separability in structural equations. The test is based
on a conditional independence test recently developed by Huang et al. (2013), building on consistent
procedures of Bierens (1982, 1990) and Stinchcombe and White (1998). The test is easy to implement
and achieves

√
n local power. We apply our test to study interest rate elasticities of loan demand in

microfinance and the impact of education on wages.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonseparable structural models have been the focus of increas-
ing attention in the econometric literature.1 So far, attention has
primarily been focused on identification and estimation, with less
attention to testing salient features of nonseparable structural re-
lations. In this paper, we provide a nonparametric test for separa-
bility in structural relations.

We consider a structural data generating process

Y = r (X,U) , (1.1)

where Y is the response of interest, X an observable treatment or
cause of interest,U denotes other causes thatmaybeunobservable,
and r is an unknownmeasurable function. Eq. (1.1) is nonseparable
in the sense that we do not assume that r has an additively sepa-
rable representation. Formally, we test the following separability
hypothesis:

H0 : There exist measurable functions r1 and r2 such that
r (X,U) = r1 (X) + r2 (U) a.s. (1.2)

HA : H0 is false.
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1 See, for example, the discussion and references in Schennach et al. (2012).

Separability can substantially simplify identification and esti-
mation,2 but as Matzkin (2007, p. 5317) notes, economic theory
rarely suggests that the unobservable causes U necessarily influ-
ence Y in an additive way. As we show, separability is equivalent
to the absence of unobservable heterogeneity of treatment effects
(when X is binary) or of marginal effects (when X is a continuous
variable). That is, separability ensures that unobservables do not
interact with observables in determining Y . This may not be plau-
sible in applications.

Further, imposing separability when it is in fact not present can
result in serious errors of interpretation and inference. In partic-
ular, separability has important implications for identification of
‘‘structural’’ objects. For example, Hahn and Ridder (2011) show
that a conditional moment restriction ‘‘identifies the ASF (average
structural function) only if the model is structurally separable in
observable covariates and unobservable random errors’’ (empha-
sis added). Similarly, Schennach et al. (2012) show that in triangu-
lar structural systems, the interpretation of the local indirect least
squares (LILS) estimator crucially depends on the separability of
the structural equation that determines X . Finally, separability has
implications for the efficiency of estimation, especially when X is

2 There is a large literature on estimation and testing of separable statistical
models. For example, see Hall and Horowitz (2005) and the references therein.
Lewbel (2001) gives conditions under which separable statistical models are
compatible with separable structural models of demand.
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binary. If so, and if the structural equation is separable, there are
more efficient estimators for the average treatment effect and the
average effect of treatment on the treated. It is thus an important
empirical question as to whether the structural equation is sepa-
rable.

Throughout, we allow X to be endogenous in the sense that X
and U may be correlated or otherwise dependent. We impose a
conditional form of exogeneity, suitable for identifying certain ef-
fects of interest, namely that X and U are independent given co-
variates Z , as in Altonji and Matzkin (2005) and White and Chalak
(2006). This is analogous to (and implies) the unconfoundedness
assumption in the treatment effects literature. Our test is straight-
forward to implement and is based on the conditional indepen-
dence test of Huang et al. (2013) (HSW), which builds on results
in the specification testing literature (Bierens, 1982, 1990; Bierens
and Ploberger, 1997; Stinchcombe andWhite, 1998 (SW)). The test
is nonparametric, yet achieves

√
n local power. The test statistic

is based on a distance, suitably measured, between restricted and
unrestricted estimators. The distance is evaluated using a class of
functions (generically comprehensively revealing (GCR) functions)
indexed by nuisance parameters. We use kernel estimators to esti-
mate this distance. Our test statistic is obtained by integrating out
the nuisance parameters, yielding Cramer–von Mises type tests.
We show that the test statistic convergesweakly to a non-standard
distribution, specifically an integral of a function of a Gaussian pro-
cess. Critical values for this test statistic are straightforwardly ob-
tained by subsampling or the bootstrap.

There are so far few tests for separability.3 To the best of our
knowledge, Hoderlein and Mammen (2009, HM) and Heckman
et al. (2010, HSU), are the only works so far to propose tests for
separability in a structural context. HM is mainly concerned with
identification and estimation of local average derivatives in non-
separable models; in discussing extensions of their modeling ap-
proach, they briefly discuss a test for separability using conditional
quantiles (HM, p. 13–14). Our approach differs from HM, in that
our test is a regression-based integrated conditional moment-type
test, whereas theirs uses conditional quantile regression. Although
HM do not provide detailed power analysis for their test, we show
that our test detects local alternatives converging to the null at the
rate n−1/2. HSU provide a test for separability when X is a binary
treatment and there is a classical exogenous instrument. Here we
use conditioning instruments (covariates or ‘‘control variables’’);
our test applies to binary, categorical, or continuous treatments.
Because there can be no generally optimal test in nonparamet-
ric contexts, it is valuable to have a variety of complementary ap-
proaches to testing a given hypothesis.

The plan of the paper is as follows. In Section 2, we lay out
the framework and motivate the test for separability. In Section 3,
we discuss testing separability via conditional independence tests.
In Section 4, we propose specific test statistics and examine their
asymptotic and finite sample properties. In Section 5, we apply our
test to study the interest rate elasticities of demand for loans and
the impact of education on wages. Section 6 contains concluding
remarks. Mathematical proofs are relegated to the Appendix.

2. Framework and motivation

2.1. The data generating process

We first introduce our data generating process assumption.
Throughout, random variables are denoted using uppercase letters
and their realizations using lowercase.

3 There is a large literature on testing for additivity in conditional expectation
functions (see for example, Li and Racine, 2007, section 9.1, p. 283 and the
references therein). But those tests only involve observable variables. In contrast,
we test separability between observables X and unobservables U .

Assumption A.1. Let (Ω, F , P) be a complete probability space.
Let (U, X, Y , Z) be random vectors on (Ω, F , P) generated by a
structural system, such that U is of dimension ku, where ku is a
positive (possibly countably infinite) integer; X is scalar; the scalar
Y is structurally generated as

Y = r (X,U) , (2.1)

where r is an unknownmeasurable function; and Z is of dimension
0 ≤ kz < ∞. Realizations for X , Y , and Z are observable, and
realizations of U may be unobservable.

Here we allow X to be binary, categorical, or continuous. For
simplicity, we assume that X is a scalar. It is straightforward to
generalize to the vector case. When X is binary, we can define such
effects as:

Treatment effect (TE) : m̃ (U) := r (1,U) − r (0,U)

Average treatment effect (ATE) : β̃ := E

m̃ (U)


Average effect of treatment on the treated (ATT) :

γ̃ := E

m̃ (U) | X = 1


.

Here, r (1,U) and r (0,U) are the potential outcomes of receiv-
ing and not receiving a treatment, respectively. For a detailed dis-
cussion of the linkage between structural equation (2.1) and the
potential outcomes framework, see White and Lu (2011). When X
is continuously distributed and r is differentiable in its first argu-
ment, we can define various analogous effects of interest:

Marginal effect (ME) : m (x,U) :=
∂r (x,U)

∂x
Average marginal effect (AME) : β (x) := E [m (x,U)]
Local average response (LAR) : γ (x) := E [m (x,U) | X = x] .

Note that m (x,U) , β (x), and γ (x) are continuous versions of
m̃ (U), β̃ , and γ̃ at level x, respectively (Florens et al., 2008). For a
detailed discussion of AME and LAR, see, for example, Chamberlain
(1984), Blundell and Powell (2003), Altonji and Matzkin (2005),
and Bester and Hansen (2009).

The random variables Z do not drive Y . Although Z is not
a standard instrument, as it is generally correlated with U , it
nevertheless plays an instrumental role in identifying the effects
of interest just defined. Specifically, Z is a conditioning instrument,
in the taxonomy of Chalak and White (2011). To state the key
conditional exogeneity assumption, we follow Dawid (1979) and
writeX ⊥ Y | Z to denote thatX andY are independent givenZ.

Assumption A.2. X and U are not measurable with respect to the
sigma-field generated by Z , and

X ⊥ U | Z .

When X is binary, A.2 is equivalent to the unconfoundedness
assumption in the treatment effects literature, which plays a key
role in identifying ATE and ATT. A.2 is also a common assumption
for identifying effects in the context of nonseparable structural
equations (see, for example, Altonji andMatzkin (2005);White and
Chalak (2006), and Hoderlein (2011)). There are several cases in
which A.2 is plausible. First, one special case of A.2 is that Z has
null dimension, i.e., X ⊥ U , the case of strict exogeneity. This
holds when X is randomized. Randomized experiments are widely
used for policy evaluation, especially in the field of development
economics. A second case in which A.2 is plausible is when Z
is a proxy for the unobservable causes U or for common causes
of X and U . For example, let X be years of education and Y be
wages.U represents other drivers of wages, such as ability, that are
unobservable. Education is endogenous, since it may be correlated
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