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a b s t r a c t

In cointegrating regressions, estimators and test statistics are nuisance parameter dependent. This paper
addresses this problem from an identification-robust perspective. Confidence sets for the long-run
coefficient (denoted β) are proposed that invert LR-tests against an unrestricted or a cointegration-
restricted alternative. For empirically relevant special cases, we provide analytical solutions to the
inversion problem. A simulation study, imposing and relaxing strong exogeneity, analyzes our methods
relative to standard Maximum Likelihood, Fully Modified and Dynamic OLS, and a stationarity-test
based counterpart. In contrast with all the above, proposed methods have good size regardless of the
identification status, and good power when β is identified.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cointegration models – defined as stationary linear combina-
tions betweennon-stationary variables – havewide applicability in
econometrics. However, it is becoming increasingly clear from the
literature that the inference on cointegrating vectors is a challeng-
ing problem. In a recent survey, Johansen (2009) discusses, among
others, two important reasons for the above. First, cointegrating
equations have traditionally been interpreted as long-term rela-
tions, yet time series that can be modeled as such are short. There-
fore, it becomes a natural part of themethodology to develop finite
sample motivated methods. Second, finite sample methods have
nevertheless been notably lacking. Available estimators and test
statistics heavily rely on asymptotic theory, andmore importantly,
are nuisance parameter dependent which may cause severe finite
sample distortions.
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To set focus, consider the vector autoregressive framework of
Johansen (1995) which, given a p-dimensional vector Xt , relies on
the regression of 1Xt on Xt−1, and e.g. a constant and further lags
of1Xt . LetΠ refer to the coefficient of Xt−1 in the latter regression.
The cointegrating relation and associated long-run coefficient,
denoted as the (p × r) matrix β , are defined in this context via a
reduced rank restriction of the formΠ = γ β ′, where r refers to the
cointegration rank. This paper focuses on estimating and testing
long-run parameters without assuming that they are identified.

Identification failure typically occurswhen the statistical objec-
tive function does not respond to some parameters, which is inher-
ent to the above structure. This is because β cannot be recovered
from the restriction Π = γ β ′ when γ is close to zero or is rank
deficient, so within and close to this region, the likelihood function
will inevitably be ill-behaved. Dufour (1997) is perhaps the first to
formalize this issue via an illustrative bivariate process.

In traditional discussions of cointegration, related issues with
γ are acknowledged although not widely recognized. Johansen
(1988, 2000, 2002) show that standard likelihood ratio (LR) criteria
are asymptotically χ2 and Bartlett adjustable as along as γ ≠ 0
yet perform poorly otherwise.3 Phillips (1994) argues that finite

3 In fact Johansen (2000, p. 741) defines the problematic parameter subspace
as ‘‘the boundary where the order of integration or the number of cointegrating
relations change’’.
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sample inference on β is possible in triangular systems setting
γ = −(Ir , 0)′ which amounts to imposing weak exogeneity and
ruling out dynamics and feedback.4 Johansen (1995, Chapter 8)
formally links weak exogeneity to zero restrictions on components
of γ . Further insights on less restrictive parametrizations of γ and
their relevance and implications on inference may be traced back
to the simulation design of Gonzalo (1994). One aim of the present
paper is to provide an identification basis for understanding and
solving such problems.

More generally, identification problems have previously been
addressed in a variety of settings including the enduring weak-
instruments case.5 However, to our knowledge, cointegration has
not been directly addressed. It may be worth remarking that
Dufour (1997) raises yet does not solve the cointegration case.
The contribution of the present paper is a formal solution for
inference on β placing no prior restrictions on γ . In line with the
above cited identification-robust literature, the main principles
we follow and show can be summarized as follows. (1) Standard
asymptotics provide poor approximations to the distributions of
estimators and test statistics. (2)Wald-type confidence intervals of
the form {estimate ± (asymptotic standard error) × (asymptotic
critical point)} will severely understate estimation uncertainty.
(3) In contrast, likelihood-ratio type methods admit identification
robust boundswhichprovides a first step towards a useful solution.
(4) It is important to consider methods that allow for unbounded
and possibly empty outcomes.

A few other papers have considered different although related
problems in cointegrating regressions. In particular, Wright
(2000) and Muller and Watson (2013) consider models in which
regressors have roots local to unity while some linear combination
of the regressand and regressors is stationary.6 Tanaka (1993) and
Jansson and Haldrup (2002) define set-ups in which regressors
have unit roots yet some linear combination of the regressand and
regressors is nearly stationary. Alternatively, Ioannidis and Chronis
(2005) assume that nearly integrated series are nearly cointegrated
when a linear combination exists with a near integration order
that is smaller than the order of near integration of the considered
series. With the exception of Wright (2000) and more recently
Muller and Watson (2013), this literature does not address
inference. Wright (2000) tests a specified value of β by assessing
the stationarity of resulting residuals for a single cointegrating
vector. Muller and Watson (2013) relax the latter restriction yet
work within a common trend definition of cointegration that
introduces further complexities via high-dimensional nuisance
parameters. Our approach in this papers remains within the
tractable and by now well understood reduced rank regression
likelihood framework.

Formally, we propose to invert LR-type statistics that test
a specified value for β against (i) an unrestricted, or (ii) a
cointegration-restricted alternative. Tests on Π in implicit form
are also considered as in Phillips (1994). We underscore – as in
Wright (2000) – the merits of a confidence set that can be empty,
and characterize unbounded outcomes aswell. Our results link un-
bounded and empty confidence sets to departures from the cointe-
gration hypothesis, the consequences of which are of obvious con-
cern. Formally, we show that unbounded confidence sets which

4 Ir refers to an r-dimensional identity matrix.
5 See e.g. Dufour (2003), Staiger and Stock (1997), Wang and Zivot (1998),

Zivot et al. (1998), Dufour and Jasiak (2001), Kleibergen (2002, 2005), Stock et al.
(2002), Moreira (2003), Dufour and Taamouti (2005, 2007), Andrews et al. (2006),
Guggenberger and Smith (2008), Antoine and Lavergne (2012), Guggenberger et al.
(2012) and Andrews and Cheng (2013).
6 The near unit root issue may be traced back to Stock (1997) and Elliott (1998).

See also Zivot (2000), Lanne (2000), Caner and Kilian (2001) and Hjalmarsson and
Österholm (2010) and the references therein; on bootstraps with near-unit roots,
see e.g. Andrews (2000) and Park (2006).

suggest that available data is uninformative on β may result from
overestimating the rank of Π . In contrast, empty sets may result
from underestimating the rank ofΠ which also reflects departures
from the exact unit root assumption on the components of Xt .

Allowing for possible weak identification, we propose three
methods to adequately size the above defined statistics. The
first method involves a bounds-based critical value; for general
insights on the usefulness of bounds when nuisance parameters
yield identification problems, see Dufour (1989, 1997), Dufour
and Khalaf (2002) and Beaulieu et al. (2013a,b). The latter may
be viewed as a least favorable (LF) critical value in the sense
of Andrews and Cheng (2013). Second, we introduce a data-
dependent critical value based on the ‘‘Type 2 Robust ’’ approach
from Andrews and Cheng (2013). The latter checks whether
available data suggests weak identification and if so, adjusts the
cut-off towards the bound via a smooth transition function. Said
differently, the Type 2 robust procedure involves a data-based
continuous transition from the standard to the bounds-based
LF critical value that improves size-corrected power. Third, we
examine a simulation-based method based on Dufour (2006) that
may be interpreted, because of its parametric basis, as an often
unattainable full-information first best (FB).

For the special cases r = 1 and r = p − 1, we provide
analytical solutions to the inversion problem. These solutions use
themathematics of quadrics as inDufour and Taamouti (2005). The
proposed LF and Type 2 critical values do not vary with the tested
value ofβ and thus preserve the quadrics form of the test inversion
solution for these special cases.

Finally, we conduct a simulation study to assess the properties
of our proposed inference methods. In addition, we also check
whether and to what degree available competing methods,
specifically the Maximum Likelihood of Johansen (1995), the Fully
Modified OLS (FMOLS) of Phillips and Hansen (1990) and Phillips
(1991, 1995), the Dynamic OLS (DOLS) of Stock andWatson (1993),
and the stationarity-test based method fromWright (2000), suffer
from identification problems. Our simulation design goes beyond
triangular representations that facilitate finite sample analysis;
see Gonzalo (1994) or Boswijk (1995) for early references in this
regard. We thus follow Gonzalo’s simulation design which allows
us to control persistence as well as exogeneity. Results can be
summarized as follows.

Although high persistence causes size distortions for the con-
sidered LR statistics, these are easily corrected as proposed above,
imposing and relaxing weak exogeneity. The size of DOLS and
FMOLS based t-tests exceeds 90% at the boundary. Furthermore,
failure of weak exogeneity causes very severe distortions for DOLS
(size ≃88% even with T = 300) as well as for FMOLS, albeit to
a lesser extent (size nevertheless remains around 37% with T =

300), evenwhen β is identified. The test fromWright (2000) is also
oversized at the boundary. In contrast, even when weak exogene-
ity fails, our proposed methods have good size regardless of the
identification status, and good power when β is identified. With
regards to power, our proposed Type 2 robust method is as power-
ful as the FB bootstrap. This is noteworthy since the Type 2method
does not require full information, while the FB (here by construc-
tion) utilizes the often unavailable information on the dependence
structure of residuals in the cointegrating equation.

The remainder of the paper is organized as follows. In Section 2,
we set-up the framework and introduce the hypotheses associated
with the test we propose to invert. The statistics underlying these
tests are defined and analyzed in Section 3, and robust cut-off
points are introduced in Section 4. In Section 5, we present the
test inversion strategy for the general case. Section 6 discusses the
r = 1 and r = p−1 special cases. The simulation study is discussed
in Section 7, while Section 8 concludes the paper. The technical
Appendix A.1 summarizes the general projectionmethods applied,
while Appendix A.2 reports the proofs of theorems and lemmas.
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