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a b s t r a c t

This paper considers forecast combination with factor-augmented regression. In this framework, a large
number of forecasting models are available, varying by the choice of factors and the number of lags. We
investigate forecast combination across models using weights that minimize the Mallows and the leave-
h-out cross validation criteria. The unobserved factor regressors are estimated by principle components
of a large panel with N predictors over T periods. With these generated regressors, we show that the
Mallows and leave-h-out cross validation criteria are asymptotically unbiased estimators of the one-
step-ahead and multi-step-ahead mean squared forecast errors, respectively, provided that N, T → ∞.
(However, the paper does not establish any optimality properties for the methods.) In contrast to well-
known results in the literature, this result suggests that the generated-regressor issue can be ignored for
forecast combination, without restrictions on the relation between N and T .

Simulations show that the Mallows model averaging and leave-h-out cross-validation averaging
methods yield lower mean squared forecast errors than alternative model selection and averaging
methods such asAIC, BIC, cross validation, andBayesianmodel averaging.We apply the proposedmethods
to the US macroeconomic data set in Stock and Watson (2012) and find that they compare favorably to
many popular shrinkage-type forecasting methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Factor-augmented regression has received much attention in
high-dimensional problemswhere a largenumber of predictors are
available over a long period. Assuming some latent factors gener-
ate the comovement of all predictors, one can forecast a particular
series by the factors rather than by the original predictors, with
the benefit of significant dimension reduction (Stock and Watson,
2002). In factor-augmented regression, the factors are determined
and ordered by their importance in driving the covariability of
many predictors, which may not be consistent with their forecast
power for the particular series of interest, an issue discussed in Bai
and Ng (2008, 2009). In consequence, model specification is nec-
essary to determine which factors should be used in the forecast
regression, in addition to specifying the number of lags of the de-
pendent variable and the number of lags of the factors included.
These decisions vary with the particular series of interest and the
forecast horizon.
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This paper proposes forecast combination based on frequentist
model averaging criteria. The forecast combination is a weighted
average of the predictions from a set of candidate models that
vary by the choice of factors and the number of lags. The model
averaging criteria are estimates of the mean squared forecast
errors (MSFE). Hence, the weights that minimize these model
averaging criteria are expected to minimize the MSFE. Two
different types of model averaging methods are considered: the
Mallows model averaging (MMA; Hansen, 2007) and the leave-h-
out cross-validation averaging (CVAh; Hansen, 2010). For one-step-
ahead forecasting, the CVAh method is equivalent to the jackknife
model averaging (JMA) from Hansen and Racine (2012). The
MMA and CVAh methods were designed for standard regression
modelswith observed regressors. However, dynamic factormodels
involve unobserved factors and their estimation creates generated
regressors. The effect of generated regressors on model selection
and combination has not previously been investigated. This paper
makes this extension and provides a theoretical justification for
frequentist model averagingmethods in the presence of estimated
factors.

We show that even in the presence of estimated factors,
the Mallows and leave-h-out cross-validation criteria are asymp-
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totically unbiased estimators of the one-step-ahead and multi-
step-ahead MSFE, respectively, provided that N, T → ∞. In
consequence, these frequentist model averaging criteria can be
applied to factor-augmented forecast combination without modi-
fication. Thus for model selection and combination, the generated-
regressor issue can be safely ignored. This is in contrast to
inference on the coefficients, where Pagan (1984), Bai and Ng
(2009), Ludvigson andNg (2011), and Gonçalves and Perron (2014)
have shown that the generated regressors affect the sampling dis-
tribution. It is worth emphasizing that our result is not based on
asymptotic rates of convergence (such as assuming T 1/2/N → 0 as
in Bai and Ng (2006)); instead it holds because the focus is on fore-
casting rather than parameter estimation. Indeed, in the context of
a non-dynamic factor model (one without lagged dependent vari-
ables and no serial correlation) we show that theMallows criterion
is an unbiased estimate of the MSFE in finite samples, and retains
the classic optimality developed in Li (1987), Andrews (1991), and
Hansen (2007). In dynamic models our argument is asymptotic,
and we do not establish any form of optimality, but our results do
not rely on differing rates of convergence.

Our simulations demonstrate the superior finite-sample per-
formance of the MMA and CVAh forecasts in the sense of low
MSFE. Our comparisons are quite thorough, comparing our pro-
cedures with AIC selection, BIC selection, Mallows selection,
cross-validation selection, approximate Bayesian model averag-
ing, equal weights, and the three-pass regression filter of Kelly
and Pruitt (forthcoming). Our methods dominate the other proce-
dures throughout the parameter space considered. These findings
are consistent with the optimality of MMA and JMA in the absence
of temporal dependence and generated regressors (Hansen, 2007;
Hansen and Racine, 2012). In addition, the advantage of CVAh is
found most prominent in long-horizon forecasts with serially cor-
related forecast errors.

We apply the proposed methods to the US macroeconomic
data set in Stock and Watson (2012) and find that they compare
favorably to many popular shrinkage-type forecasting methods.

The frequentist model averaging approach adopted here ex-
tends the large literature on forecast combination, see Granger
(1989), Clemen (1989), Diebold and Lopez (1996), Hendry and
Clements (2002), Timmermann (2006), and Stock and Watson
(2006), for reviews. Stock and Watson (1999, 2004, 2012) provide
detailed empirical evidence demonstrating the gains of forecast
combination. The simplest forecast combination is to use equal
weights. Compared to simplemodel averaging, MMA and CVAh are
less sensitive to the choice of candidate models. Alternative fre-
quentist forecast combination methods are proposed by Bates and
Granger (1969), Granger and Ramanathan (1984), Timmermann
(2006), Buckland et al. (1997), Burnham and Anderson (2002),
Hjort and Claeskens (2003), Elliott et al. (2013), among others.
Hansen (2008) shows that MMA has superior MSFE in one-step-
ahead forecasts when compared to many other methods.

Another popular model averaging approach is the Bayesian
model averaging (BMA; Min and Zellner, 1993). The BMA has
been widely used in econometric applications, including Sala-i-
Martin et al. (2004), Brock and Durlauf (2001), Brock et al. (2003),
Avramov (2002), Fernandez et al. (2001a,b), Garratt et al. (2003),
and Wright (2008, 2009). Geweke and Amisano (2011) propose
optimal density combination for forecast models. Compared to
BMA, the frequentist model averaging approach here does not re-
ply on priors and allows for misspecification through the balance
of misspecification errors against overparameterization. Further-
more, our frequentist model averaging approach explicitly deals
with generated-regressors, while BMA has no known adjustment.

As an alternative to the model averaging approach, forecasts
can be based on one model picked by model selection. Numerous
model selection criteria have been proposed, including the Akaike

information criterion (AIC; Akaike, 1973), Mallows’ Cp (Mallows,
1973), Bayesian information criterion (BIC; Schwarz, 1978), and
cross-validation (CV; Stone, 1974). Bai and Ng (2009) argue
that these model selection criteria are unsatisfactory for factor-
augmented regression because they rely on the specific ordering
of the factors and the lags, where the natural order may not work
well for the forecast of a particular series. This issue is alleviated
in forecast combination by the flexibility of choosing candidate
models. In addition, the abovemodel selectionprocedures havenot
been investigated in the presence of generated regressors; ours is
the first to make this extension.

This paper complements the growing literature on forecast-
ing with many regressors. In addition to those discussed above,
many papers consider forecast in a data rich environment. Forni
et al. (2000, 2005) consider the generalized dynamic factor model
and frequency domain estimation. Bernanke et al. (2005) propose
forecast with factor-augmented vector autoregressive (FAVAR)
model. Bai and Ng (2008) form target predictors associated with
the object of interest. Bai and Ng (2009) introduce the boost-
ing approach. A factor-augmented VARMA model is suggested
by Dufour and Stevanovic (2010). Pesaran et al. (2011) also
investigate multi-step forecasting with correlated errors and
factor-augmentation, but in a multivariate framework. Stock and
Watson (2012) describe a general shrinkage representation that
covers special cases like pretest, BMA, empirical Bayes, and bagging
(Inoue and Kilian, 2008). Kelly and Pruitt (forthcoming) propose
a three-pass-regression filter to handle many predictors. Tu and
Lee (2012) consider forecastwith supervised factormodels. Dobrev
and Schaumgurg (2013) propose using regularized reduced rank
regression models for multivariate forecasting with many regres-
sors. A comprehensive comparison amongmany competing meth-
ods is available in Kim and Swanson (2014). The dynamic factor
model is reviewed in Stock andWatson (2011). Ng (2011) provides
an excellent review on variable selection and contains additional
references.

The rest of the paper is organized as follows. Section 2 intro-
duces the dynamic factor model and describes the estimators and
combination forecasts. Section 3 provides a detailed description of
forecast selection and combination procedures based on the Mal-
lows and leave-h-out cross-validation criteria. Section 4 provides
theoretical justification by showing the Mallows and leave-h-out
cross-validation criteria are asymptotically unbiased estimators of
theMSFE. Monte Carlo simulations and an empirical application to
US macroeconomic data are presented in Sections 5 and 6. Sum-
mary and discussions are provided in Section 7.

Matlab and Gauss code for the simulation and empirical work
reported in the paper is posted at www.ssc.wisc.edu/~bhansen.

2. Model and estimation

Suppose we have observations (yt , Xit) for t = 1, . . . , T and
i = 1, . . . ,N, and the goal is to forecast yT+h using the factor-
augmented regression model

yt+h = α0 + α(L)yt + β(L)′Ft + εt+h (2.1)

where h ≥ 1 is the forecast horizon and Ft ∈ Rr are unobserved
common factors satisfying

Xit = λ′

iFt + eit . (2.2)

The vectors λi ∈ Rr are called the factor loadings, eit is called an
idiosyncratic error, and α(L) and β(L) are lag polynomials of order
p and q, respectively, for some 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax.
We assume that a sufficient number of initial observations are
available in history so that the variables in (2.1) are available for
T time series observations.
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