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a b s t r a c t

We forecast a single time series usingmany predictor variableswith a new estimator called the three-pass
regression filter (3PRF). It is calculated in closed form and conveniently represented as a set of ordinary
least squares regressions. 3PRF forecasts are consistent for the infeasible best forecast when both the
time dimension and cross section dimension become large. This requires specifying only the number of
relevant factors driving the forecast target, regardless of the total number of common factors driving
the cross section of predictors. The 3PRF is a constrained least squares estimator and reduces to partial
least squares as a special case. Simulation evidence confirms the 3PRF’s forecasting performance relative
to alternatives. We explore two empirical applications: Forecasting macroeconomic aggregates with a
large panel of economic indices, and forecasting stock market returns with price–dividend ratios of stock
portfolios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A common interest among economists and policymakers is
harnessing vast predictive information to forecast important
economic aggregates like national product or stock market value.
However, it can be difficult to use this wealth of information in
practice. If the predictors number near ormore than the number of
observations, the standard ordinary least squares (OLS) forecaster
is known to be poorly behaved or nonexistent.1

How then does one effectively use vast predictive information?
A solution well known in the economics literature views the
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number of regressors is large relative to the number of data points.

data as generated from a model in which latent factors drive
the systematic variation of both the forecast target, y, and the
matrix of predictors, X . In this setting, the best prediction of y is
infeasible since the factors are unobserved. As a result, a factor
estimation step is required. The literature’s benchmark method
extracts factors that are significant drivers of variation in X and
then uses these to forecast y.

Our procedure springs from the idea that the factors that are
relevant to y may be a strict subset of all the factors driving
X . Our method, called the three-pass regression filter (3PRF),
selectively identifies only the subset of factors that influence the
forecast target while discarding factors that are irrelevant for the
target but that may be pervasive among predictors. The 3PRF has
the advantage of being expressed in closed form and virtually
instantaneous to compute.

This papermakes fourmain contributions. The first is to develop
asymptotic theory for the 3PRF. We begin by proving that the
estimator converges in probability to the infeasible best forecast
in the (simultaneous) limit as cross section size N and time series
dimension T become large. This is true even when variation
in predictors is dominated by target-irrelevant factors. We then
derive the limiting distributions for the estimated forecasts
and predictive coefficients, and provide consistent estimators
of asymptotic covariance matrices that can be used to perform
inference. The second contribution of the paper is to verify the
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finite sample accuracy of our asymptotic theory through Monte
Carlo simulations.

We also show that the method of partial least squares (PLS)
is a special case of the 3PRF. Like partial least squares, the 3PRF
can use the forecast target to discipline its dimension reduction.
This emphasizes the covariance between predictors and target in
the factor estimation step. But unlike PLS, the 3PRF also allows the
econometrician to select additional disciplining variables, or factor
proxies, on the basis of economic theory. Furthermore, because
it is a special case of our methodology, the asymptotic theory
we develop for the 3PRF applies directly to partial least squares.
Recently Groen and Kapetanios (2009) showed the consistency
of PLS under sequential N, T limits, while our approach proves
consistency in the less restrictive simultaneous N, T limit. Those
authors do not derive limiting distributions as we do here and so,
to the best of our knowledge, our joint N and T asymptotics are
new results to the PLS literature.

In our third contribution, we compare the 3PRF to other
methods in order to illustrate the source of its improvement
in forecasting performance. The economics literature has relied
mainly on principal component regression (PCR) for forecasting
problems involving many predictors, exemplified by Stock and
Watson (1998, 2002a,b, 2006, 2012), Forni and Reichlin (1996,
1998), Bai and Ng (2002, 2006, 2008), Bai (2003) and Boivin and
Ng (2006), among others.2 Like the 3PRF, PCR can be calculated
instantaneously for virtually any N and T . Stock and Watson’s key
insight is to condense information from the large cross section
into a small number of predictive indices before estimating a linear
forecast. PCR condenses the cross section according to covariance
within the predictors. This identifies the factors driving the panel of
predictors, some of which may be irrelevant for the dynamics of
the forecast target, and uses those factors to forecast.

In contrast, the 3PRF condenses the cross section according to
covariance with the forecast target. PCR must estimate all common
factors among predictors to achieve consistency, including those
that are irrelevant for forecasting. The 3PRF need only estimate
the relevant factors, which are always less than or equal to the
total number of factors required by PCR. While this difference is
innocuous in large samples, it can be a crucial consideration in
small samples.

We are not the first to investigate potential improvements
upon PCR factor-based forecasts. Doz et al. (2012) propose quasi-
maximum likelihood factor estimation as an alternative to PCR. Bai
andNg (2008) propose statistical thresholding rules that drop vari-
ables found to contain irrelevant information, building on the in-
sights in Boivin andNg (2006). In a similar vein, DeMol et al. (2008)
propose Bayesian shrinkage methods. Thresholding and shrinkage
methods are especially useful when relevant information is non-
pervasive and confined to a subset of predictors. This does not solve
the problem of pervasive irrelevant information among predictors.
Our approach explicitly allows for both relevant and irrelevant per-
vasive factors.3

The final contribution of the paper is to provide empirical sup-
port for the 3PRF’s strong forecasting performance in simulations
and two separate empirical applications.We compare 3PRF to PCR,
thresholding methods of Bai and Ng (2008), shrinkage methods
of De Mol et al. (2008), and the factor analytic approach of Doz
et al. (2012). Simulations show that the 3PRF often outperforms

2 The model investigated by Forni et al. (2000, 2004, 2005) concentrates on a
frequency domain approach.
3 We also demonstrate that the performance of 3PRF is robust to cases where

relevant information is non-pervasive—that is, when only a subset of predictors
have non-zero loadings on the relevant factors.

alternatives across a variety of factor model specifications. In em-
pirical applications, we find that the 3PRF is a successful predictor
of macroeconomic aggregates and equity market returns, and typ-
ically outperforms alternative methods.

The paper is structured as follows. Section 2 defines the 3PRF
and proves its asymptotic properties. Section 3 reinterprets the
3PRF as a constrained least squares solution, then compares and
contrasts it with partial least squares. Section 4 explores the finite
sample performance of the 3PRF and other methods in Monte
Carlo experiments. Section 5 reports empirical results for 3PRF
and other methods’ forecasts in asset pricing and macroeconomic
applications. All proofs and supporting details are placed in the
Appendix.

2. The three-pass regression filter

2.1. The estimator

There are several equivalent approaches to formulating our
procedure, each emphasizing a related interpretation of the
estimator. We begin with what we believe to be the most intuitive
formulation of the filter, which is the sequence of OLS regressions
that gives the estimator its name.

First we establish the environment wherein we use the 3PRF.
There is a target variable which we wish to forecast. There
exist many predictors which may contain information useful for
predicting the target variable. The number of predictors N may
be large and number near or more than the available time series
observations T , which makes OLS problematic. Therefore we look
to reduce the dimension of predictive information, and to do so
we assume the data can be described by an approximate factor
model. In order to make forecasts, the 3PRF uses proxies: These
are variables, driven by the factors (and as we emphasize below,
driven by target-relevant factors in particular), which we show are
always available from the target and predictors themselves, but
may alternatively be supplied to the econometrician on the basis
of economic theory. The target is a linear function of a subset of the
latent factors plus some unforecastable noise. The optimal forecast
therefore comes from a regression on the true underlying relevant
factors. However, since these factors are unobservable, we call this
the infeasible best forecast.

Wewrite y for the T ×1 vector of the target variable time series
from 2, 3, . . . , T +1.4 Let X be the T ×N matrix of predictors, X =

(x′

1, x
′

2, . . . , x
′

T )
′

= (x1, x2, . . . , xN) that have been standardized
to have unit time series variance. Note that we are using two
different typefaces to denote the N-dimensional cross section of
predictors observed at time t (xt ), and the T -dimensional time
series of the ith predictor (xi). This is to distinguish the time series
of predictors from the cross section of predictors in Table 1. We
denote the T × L matrix of proxies as Z , which stacks period-
by-period proxy data as Z = (z ′

1, z
′

2, . . . , z
′

T )
′. We make no

assumption on the relationship between N and T but assume
L ≪ min(N, T ) in the spirit of dimension reduction. We provide
additional details regarding the data generating processes for y, X
and Z in Assumption 1.

With this notation in mind, the 3PRF’s regression-based
construction is defined in Table 1. The first pass runs N separate
time series regressions, one for each predictor. In these first pass
regressions, the predictor is the dependent variable, the proxies
are the regressors, and the estimated coefficients describe the
sensitivity of the predictor to factors represented by the proxies.
As we show later, proxies need not represent specific factors and

4 Nothing prevents us from generalizing this to consider direct forecasts of yt+h
for h ∈ {1, 2, . . .}—the theory is identical. For exposition’s sake we deal only with
yt+1 , knowing that t + 1 could instead be t + h but everything that follows would
still hold.
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