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a b s t r a c t

The risk of a large portfolio is often estimated by substituting a good estimator of the volatility matrix.
However, the accuracy of such a risk estimator is largely unknown.We study factor-based risk estimators
under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the
estimation. The H-CLUB is constructed using the confidence interval of risk estimators with either known
or unknown factors. We derive the limiting distribution of the estimated risks in high dimensionality.
We find that when the dimension is large, the factor-based risk estimators have the same asymptotic
variance no matter whether the factors are known or not, which is slightly smaller than that of the
sample covariance-based estimator. Numerically, H-CLUB outperforms the traditional crude bounds, and
provides an insightful risk assessment. In addition, our simulated results quantify the relative error in the
risk estimation, which is usually negligible using 3-month daily data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The potential of a portfolio’s loss is termed as the portfolio risk.
There are two types of portfolio risks. The systematic risk is the
risk inherent to the entire market, such as risk associated with
interest rates, currencies, recession, war and political instability,
etc. The systematic risk cannot be diversified away, even with a
well-diversified portfolio. In contrast, specific risk (or idiosyncratic
risk) refers to the risk that affects a very specific group of securities
or even an individual security. For example, it can be the risk
of price changes due to the unique circumstances of a specific
stock. Unlike systematic risk, specific risk can be reduced through
diversification.

Estimating and assessing the risk of a large portfolio is an
important topic in financial econometrics and risk management.
The risk of a given portfolio allocation vector wT is conveniently
measured by (w′

T6wT )
1/2, in which 6 is a volatility (covariance)

matrix of the assets’ returns. Often multiple portfolio risks are at
interests and hence it is essential to estimate the volatility matrix
6. The problem becomes challenging when the portfolio size is
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large. Suppose we have created a portfolio from two thousand
assets and invested in a part of selected assets. The covariance
matrix 6 involved then contains over two million unknown
parameters. Yet, the sample size based on one year’s daily data
is around 252. It is hard to assess the estimation accuracy when
the estimation errors from more than two million parameters are
aggregated. Hence some regularization method is recommended
to estimate and assess risks.

We estimate and assess the risks of a given portfolio vector wT
based on factor models. Two factor-based methods are compared,
previously proposed by Fan et al. (2011, 2013). The first estimator
assumes the factors to be known and observable. The second
method deals with the case of unknown factors. In both cases, the
factor model imposes a conditionally sparse structure, in that the
idiosyncratic covariance is a large sparse matrix. This yields to an
approximate factor model as in Chamberlain and Rothschild (1983),
with a non-diagonal error covariance matrix.

We provide a new and practical method to assess the accuracy
of risk estimation w′

T (
6 − 6)wT . In the literature (e.g. Fan et al.,

2012), this term has been bounded byξT = ∥wT∥
2
1∥
6 − 6∥max

where ∥wT∥1 is the gross exposure of the portfolio, and is bounded
when there are no extremepositions in the portfolio. However, this
upper bounddepends on the unknown6, hence is not applicable in
practice. In addition, numerical studies in this paper demonstrate
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that this upper bound is too crude: it is often of the same or even
larger scale than the estimated risk. In contrast, we provide a high-
confidence level upper bound (H-CLUB) for w′

T (
6 − 6)wT , which

is of much smaller scale and easy to compute in practice. H-CLUB
is constructed based on the confidence interval for the true risk.
For the risk estimator w′

T
6wT and a given ϵ ∈ (0, 1), we find an

H-CLUBU(ϵ) such that

P(|w′

T (
6 − 6)wT | ≤ U(ϵ)) → 1 − ϵ.

In contrast, P(|w′

T (
6 − 6)wT | ≤ ξT ) = 1. Hence H-CLUB is an

upper bound for the risk estimation error with high confidence
while the traditional boundξT is of full confidence.

For the inferential theory of the risk estimators with diversi-
fied portfolios, we prove that the effects of estimating the factor
loadings and unknown factors are asymptotically negligible. Inter-
estingly, it is found that when the dimensionality is larger than the
sample size, the factor-based risk estimators have the same asymp-
totic variances no matter whether the factors are known or not.
Hence the high dimensionality is in fact a bless for risk estimation
instead of a curse from this point of view. In addition, the asymp-
totic variance of factor-based estimators is slightly smaller than
that of the sample covariance-based estimator, but the difference
is small. This demonstrates that the benefit of using a factor model
is not in terms of a much smaller asymptotic variance, because the
systematic risk cannot be diversified. Rather, factor models give a
strictly positive definite covariance estimator, which is essential to
estimate the optimal portfolio allocation vector, and also interprets
the structure of the portfolio risks.

Using our simulated results based on themodel calibrated from
the US equity market data, we are able to quantify the relative
error of the estimation error or coefficient of variation, defined as
STD(w′

T
6wT )/w′

T
6wT , where STD(·) denotes the standard error

of the estimated risk. Interestingly, this ratio is just a few percent
and is approximately independent of the gross exposure ∥wT∥1
but sensitive to the length of the time series. On the other hand,
we also quantify the relation between the crude bound and the
practical H-CLUB. We find thatξT is many times larger thanU(ϵ),
and the ratioξT/U(ϵ) increases as the gross exposure increases.
A sampling technique that picks a random portfolio with a given
gross exposure level is introduced,which can be useful for portfolio
optimization and understanding the overall risks within a given
level of gross exposure.

The interest on large portfolios surges recently. Pesaran and
Zaffaroni (2008) examined the asymptotic behavior of the port-
folio weights. Brodie et al. (2009) and Fan et al. (2012) ad-
dressed the problem of portfolio selection using a regularization
penalty. Gomez and Gallon (2011) numerically compared several
methods of covariance matrix estimation for portfolio manage-
ment. In particular, the optimal portfolio selection involves in-
verting an estimated 6, which is a challenging problem under a
large number of assets. Gagliardini et al. (2010) considered a ran-
dom coefficient model for an unbalanced panel, and focused on
the observable factors, while we also study the inferential the-
ory of the unobservable factor case. The recent works by Fan et al.
(2011, 2013) are only concerned about covariance estimations and
no inferential theories were studied. The literature is also found
in Jacquier and Polson (2010), Antoine (2011), Chang and Tsay
(2010), DeMiguel et al. (2009a,b), Ledoit andWolf (2003), El Karoui
(2010), Lai et al. (2011), Bannouh et al. (2012), Gandy and Veraart
(2012), Bianchi and Carvalho (2011), among others.

The rest of the paper is organized as follows. Section 2 intro-
duces risk estimators based on factor models under both known
and unknown factors. Section 3 constructs theH-CLUB for each risk
estimator based on the confidence interval for risks. Section 4 de-
rives the limiting distributions of the risk estimators and compares
their asymptotic variances. Section 5 presents simulation results.

An empirical study is considered in Section 6. Finally, Section 7 con-
cludes. All the proofs are given in the Appendix.

Throughout the paper, ∥wT∥1 =
N

i=1 |wi| is used to denote
the gross exposure of a given portfolio allocation vector. For a
square matrix A, λmin(A) and λmax(A) represent its minimum and
maximum eigenvalues; ∥A∥1 = maxi


j |Aij|. Let ∥A∥max and ∥A∥

denote its element-wise sup-norm and operator norm, given by
∥A∥max = maxi,j |Aij| and ∥A∥ = λ

1/2
max(A′A) respectively.

2. Estimation of portfolio’s risks

Let {Rt}
T
t=1 be a strictly stationary time series of an N × 1

vector of observed excess returns and 6 = cov(Rt), often known
as the volatility matrix. The portfolio risk of a given allocation
vector wT is given by


w′

T6wT . With a covariance estimator 6,

a straightforward estimator of the portfolio risk is

w′

T
6wT . But

how good such a substitution estimator is and how to assess its
estimation accuracy when the dimension N is large relative to T
are the questions addressed here.

The problem of estimating the risk of a given portfolio is chal-
lenging due to the high dimensionality of 6. In most cases N can
be much larger than T . We assume 6 to be time-invariant within a
short period,which holds approximately for locally stationary time
series. Recently, Chang and Tsay (2010) proposed a Cholesky de-
composition approach to estimating the large covariance matrix,
and used simulation to assess its performance. A natural alterna-
tive approach is through the factor model (e.g. Stock and Watson,
2002; Bai, 2003), because the assets’ returns are usually driven by
a few market factors. Estimating 6 is possible when both the fac-
tor and the idiosyncratic components can be estimated well. We
thus consider three estimators ofw′

T6wT for a given wT , based on
three different estimators6: sample covariance estimator, and fac-
tor model estimators with either observed or unobserved factors.

2.1. Sample-covariance-based estimator

The first estimator6 = S is the conventional sample covariance
matrix based on {Rt}

T
t=1. Because we are mainly concerned about

the variance, for simplicity and exposition, let us assume that the
returns have mean zero and S = T−1T

t=1 RtR′
t . The asymptotic

impact of using S on the risk management has been studied by
Fan et al. (2008, 2012) when N is much larger than T . The sample
covariance estimator does not require any structural assumption
on the assets’ returns. It was shown by the aforementioned authors
that for a given portfolio wT with a bounded gross exposure (that
is, ∥wT∥1 is bounded),

w′

T (S − 6)wT ≤ ∥wT∥
2
1∥S − 6∥max = Op


logN
T


.

However, when N > T , it is well known that S is singular, and
therefore may result in an estimated risk close to zero for certain
portfolios.

2.2. Estimating risks based on factor models

Weassume the true data generating process (DGP) ofRt to be an
‘‘approximate factor model’’ (Chamberlain and Rothschild, 1983):

Rt = Bft + ut , t ≤ T , (2.1)

where B is an N × K matrix of factor loadings; ft is a K × 1 vector
of common factors, and ut is an N × 1 vector of idiosyncratic
error components. In contrast to N and T , here K is assumed to
be fixed. The common factors may or may not be observable. For
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